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About Me

From Fairfield, IA

Figure: From http://www.

jeffersoncountyiowa.com/.

Interested civil engineering

Figure: Clifton Suspension
Bridge, Bristol, England.
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About Me

Started as civil engineering major

Switched to math by end of freshman year

Interested in number theory

Did a few internships & Research Experiences for
Undergraduates (REUs)
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About Me

5th year in mathematics Ph.D. program

Like teaching mathematics

Started getting involved in math outreach

Math Teachers’ Circles
Julia Robinson Mathematics Festival (JRMF)
Math Circles
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Apollonian Circle Packings: The Construction

Given three mutually tangent circles with disjoint points of
tangency, there are exactly two circles tangent to the given ones.
(Proved by Apollonius of Perga.)
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Apollonian Circle Packings: The Construction

Figure: An Apollonian circle packing.
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Apollonian Circle Packings: The Construction

Figure: An Apollonian circle packing.
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Apollonian Circle Packings: The Construction

Figure: An Apollonian circle packing.
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Apollonian Circle Packings: The Construction

Figure: An Apollonian circle packing.
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Apollonian Circle Packings

Figure: An Apollonian circle
packing.

Label on circle:
bend = 1/radius

What do you notice about
the bends that you can see
on this Apollonian circle
packing?

They are all integers.

Why?
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Apollonian Circle Packings

Figure: An Apollonian circle
packing.
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Apollonian Circle Packings

Figure: An Apollonian circle
packing.

Label on circle:
bend = 1/radius

What do you notice about
the bends that you can see
on this Apollonian circle
packing?

They are all integers.

Why?
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.

0

0

1 1

4

4
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.

If b1, b2, b3, b4 are bends of
four mutually tangent
circles, then

b21 + b22 + b23 + b24

=
1

2
(b1 + b2 + b3 + b4)2.
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Descartes’ Circle Theorem

Theorem (Descartes’ Circle Theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b21 + b22 + b23 + b24).

Example

0

0

1 1

4

4 b1 = 0, b2 = b3 = 1, b4 = 4

(0 + 1 + 1 + 4)2 = 62 = 36

2(02 + 12 + 12 + 42) = 2(18) = 36
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Descartes’ Circle Theorem

Theorem (Descartes’ Circle Theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b21 + b22 + b23 + b24).

Example

b1 = −11, b2 = 21, b3 = 24, b4 = 28

(−11 + 21 + 24 + 28)2 = 622 = 3844

2((−11)2 + 212 + 242 + 282) = 2(1922) = 3844
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Descartes’ Circle Theorem

Theorem (Descartes’ Circle Theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b21 + b22 + b23 + b24).

Example

b1 = −11, b2 = 21, b3 = 24, b4 = 28

(−11 + 21 + 24 + 28)2 = 622 = 3844

2((−11)2 + 212 + 242 + 282) = 2(1922) = 3844
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Descartes’ Circle Theorem

Theorem (Descartes’ Circle Theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then
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Descartes’ Circle Theorem

Theorem (Descartes’ Circle Theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b21 + b22 + b23 + b24).

Fix b1, b2, b3. What do I know about the solutions to b4?

If b4 and b′4 are solutions, b1, b2, b3 fixed, then, by the quadratic
formula,

b4 + b′4 = 2(b1 + b2 + b3).
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Matrices and Geometry

b′4 = 2b1 + 2b2 + 2b3 − b4

Matrix form:
b1
b2
b3
b′4

 =


1

1
1

2 2 2 −1


︸ ︷︷ ︸

M4


b1
b2
b3
b4



Figure: Four tangent circles
and a reflection to a fifth
circle.
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Matrices and the Apollonian Group

M1 =


−1 2 2 2

1
1

1

 , M2 =


1
2 −1 2 2

1
1

 ,

M3 =


1

1
2 2 −1 2

1

 , M4 =


1

1
1

2 2 2 −1

 .

The Apollonian group Γ := 〈M1,M2,M3,M4〉 (set of products of
M1,M2,M3,M4)

maps bends of an Apollonian circle packing to more bends of
the packing,

“generates” all bends of the packing from four bends, and

sends integer vectors to integer vectors.
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Integrality of Bends

The Apollonian group
Γ := 〈M1,M2,M3,M4〉

maps bends of an Apollonian
circle packing to more bends
of the packing,

“generates” all bends of the
packing from four bends, and

sends integer vectors to
integer vectors.

Since we start with an integer
vector of bends
(namely, (−11, 21, 24, 28)t),
all of our bends are integers!

Figure: An Apollonian
circle packing.

Which integers appear
as bends?
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Integrality of Bends

The Apollonian group
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Local Obstructions Modulo 24

Theorem (Fuchs, 2011)

For an integral, primitive Apollonian circle packing, there are local
obstructions modulo 24 for the bends of the packing, that is, the
remainder of a bend divided by 24 is in a certain subset of
remainders.

Example

each bend
≡ 0, 4, 12, 13, 16, or 21 (mod 24) .
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Admissible Integers

Definition

An integer n is admissible if for every q ≥ 1

n ≡ bend of some circle in the packing (mod q)

(that is, for every q ≥ 1, there exists a bend m of a circle in the
packing such that m and n have the same remainders when
dividing by q).

Theorem (Fuchs, 2011)

n is admissible if and only if n is in certain congruence classes
modulo 24 (i.e., the remainder of n divided by 24 is in a certain
subset of remainders).
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Admissible Integers

Theorem (Fuchs, 2011)

n is admissible if and only if n is in certain congruence classes
modulo 24 (i.e., the remainder of n divided by 24 is in a certain
subset of remainders).

Example

n is admissible ⇐⇒
n ≡ 0, 4, 12, 13, 16, or 21 (mod 24).
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Local-Global Conjecture

Conjecture

The bends of a fixed primitive, integral Apollonian circle packing
P satisfy a local-to-global principle.
That is, there is an N0 = N0(P) so that, if n > N0 and n is
admissible, then n is the bend of a circle in the packing.

Example

We think that if
n ≡ 0, 4, 12, 13, 16, or 21 (mod 24)
and n is sufficiently large,
then n is the bend of a circle in the
packing.
We do not have a proof of this!
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Why Do We Have a Local-Global Conjecture?

The number of circles in P with bend at most N (counted with
multiplicity) is asymptotically equal to a constant times Nδ, where
δ = the Hausdorff dimension of the closure of P.

δ ≈ 1.30568 . . .

Thus, we would would expect that the multiplicity of a given
admissible bend up to N is roughly Nδ−1 ≈ N0.30568 ≥ 1, so we
should expect that every sufficiently large admissible number
should be represented.
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The Best We Can Do Right Now

Theorem (Bourgain–Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the
Apollonian circle packing P. Quantitatively, the number of
exceptions up to N is bounded above by cN1−η, where c , η > 0 are
constants only dependent on the packing.

f (N)

N

cN1−η

≈ (fraction of admissible classes) · N
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Soddy Sphere Packings: The Construction

Given four mutually tangent spheres with disjoint points of
tangency, there are exactly two spheres tangent to the given ones.

Figure: Four tangent spheres. Figure: Four tangent spheres
with two additional tangent
spheres.
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Soddy Sphere Packings: The Construction

Figure: Four
tangent
spheres.

Figure: Four
tangent spheres
with two
additional
tangent
spheres.

Figure: More
tangent
spheres.

Figure: A Soddy
sphere packing.
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Soddy Sphere Packings

Figure: A Soddy sphere packing.

Label on sphere:
bend = 1/radius

What do you notice about
the bends that you can see
on this Soddy sphere
packing?

They are all integers.

Why?
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Soddy Sphere Packings

Figure: A Soddy sphere packing.

Label on sphere:
bend = 1/radius

What do you notice about
the bends that you can see
on this Soddy sphere
packing?

They are all integers.

Why?
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“The Kiss Precise” (Part 2)

Figure: The last stanza of “The
Kiss Precise” by F. Soddy in
Nature, 1936.

If b1, b2, b3, b4, b5 are
bends of five mutually
tangent spheres, then

(b1 + b2 + b3 + b4 + b5)2

= 3(b21 + b22 + b23 + b24 + b25).
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“The Kiss Precise” (Part 2)

Figure: The last stanza of “The
Kiss Precise” by F. Soddy in
Nature, 1936.

If b1, b2, b3, b4, b5 are
bends of five mutually
tangent spheres, then

(b1 + b2 + b3 + b4 + b5)2

= 3(b21 + b22 + b23 + b24 + b25).
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Soddy Quadratic Form

If b1, b2, b3, b4, b5 are bends of five mutually tangent spheres, then

(b1 + b2 + b3 + b4 + b5)2 = 3(b21 + b22 + b23 + b24 + b25).

Fix b1, b2, b3, b4. What do I know about the solutions to b5?

If b5 and b′5 are solutions, b1, b2, b3, b4 fixed, then, by the
quadratic formula,

b5 + b′5 = b1 + b2 + b3 + b4.
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Soddy Quadratic Form

If b1, b2, b3, b4, b5 are bends of five mutually tangent spheres, then

(b1 + b2 + b3 + b4 + b5)2 = 3(b21 + b22 + b23 + b24 + b25).

Fix b1, b2, b3, b4. What do I know about the solutions to b5?

If b5 and b′5 are solutions, b1, b2, b3, b4 fixed, then, by the
quadratic formula,

b5 + b′5 = b1 + b2 + b3 + b4.
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Matrices and Geometry

b′5 = b1 + b2 + b3 + b4 − b5

Matrix form:
b1
b2
b3
b4
b′5

 =


1

1
1

1
1 1 1 1 −1


︸ ︷︷ ︸

M5


b1
b2
b3
b4
b5



Figure: Five tangent spheres
and a reflection to a sixth
sphere
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Matrices and Geometry

b′5 = b1 + b2 + b3 + b4 − b5

Matrix form:
b1
b2
b3
b4
b′5

 =


1

1
1

1
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︸ ︷︷ ︸
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Figure: Five tangent spheres
and a reflection to a sixth
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Matrices and the Soddy Group

M1 =


−1 1 1 1 1

1
1

1
1

 , M2 =


1
1 −1 1 1 1

1
1

1

 , M3 =


1

1
1 1 −1 1 1

1
1

 ,

M4 =


1

1
1

1 1 1 −1 1
1

 , M5 =


1

1
1

1
1 1 1 1 −1



The Soddy group Γ := 〈M1,M2,M3,M4,M5〉 (set of products of
M1,M2,M3,M4,M5)

maps bends of a Soddy sphere packing to more bends of the
packing,

“generates” all bends of the packing from five bends, and

sends integer vectors to integer vectors.
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Matrices and the Soddy Group

M1 =


−1 1 1 1 1

1
1

1
1

 , M2 =


1
1 −1 1 1 1

1
1

1

 , M3 =


1

1
1 1 −1 1 1

1
1

 ,

M4 =


1

1
1

1 1 1 −1 1
1

 , M5 =


1

1
1

1
1 1 1 1 −1



The Soddy group Γ := 〈M1,M2,M3,M4,M5〉 (set of products of
M1,M2,M3,M4,M5)

maps bends of a Soddy sphere packing to more bends of the
packing,

“generates” all bends of the packing from five bends, and

sends integer vectors to integer vectors.
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Integrality of Bends

The Soddy group
Γ := 〈M1,M2,M3,M4,M5〉

maps bends of a Soddy
sphere packing to more
bends of the packing,

“generates” all bends of the
packing from five bends, and

sends integer vectors to
integer vectors.

Since we start with an integer
vector of five bends,
all of our bends are integers!

Figure: A Soddy sphere
packing.

Which integers appear
as bends?
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Integrality of Bends

The Soddy group
Γ := 〈M1,M2,M3,M4,M5〉

maps bends of a Soddy
sphere packing to more
bends of the packing,

“generates” all bends of the
packing from five bends, and

sends integer vectors to
integer vectors.

Since we start with an integer
vector of five bends,
all of our bends are integers!
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packing.

Which integers appear
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Local Obstructions Modulo 3

Lemma (Kontorovich, 2019)

For an integral, primitive Soddy sphere packing P, there is an
ε = ε(P) ∈ {1, 2} such that each bend of the packing is

≡ 0 or ε (mod 3) .

Example

each bend ≡ 0 or 1 (mod 3) .
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Admissible Integers

Definition

An integer n is admissible if for every q ≥ 1

n ≡ bend of some sphere in the packing (mod q)

(that is, for every q ≥ 1, there exists a bend m of a sphere in the
packing such that m and n have the same remainders when
dividing by q).

Theorem (Kontorovich, 2019)

n is admissible if and only if

n ≡ 0 or ε(P) (mod 3) .
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Admissible Integers

Definition

An integer n is admissible if for every q ≥ 1

n ≡ bend of some sphere in the packing (mod q)

(that is, for every q ≥ 1, there exists a bend m of a sphere in the
packing such that m and n have the same remainders when
dividing by q).

Theorem (Kontorovich, 2019)

n is admissible if and only if

n ≡ 0 or ε(P) (mod 3) .
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Admissible Integers

Theorem (Kontorovich, 2019)

n is admissible if and only if

n ≡ 0 or ε(P) (mod 3) .

Example

n is admissible ⇐⇒
n ≡ 0 or 1 (mod 3).
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Local-Global Theorem

Theorem (Kontorovich, 2019)

The bends of a fixed primitive, integral Soddy sphere packing P
satisfy a local-to-global principle.
That is, there is an N0 = N0(P) so that, if n > N0 and n is
admissible, then n is the bend of a sphere in the packing.

Example

If n ≡ 0 or 1 (mod 3) and n is
sufficiently large, then n is the bend
of a sphere in the packing.
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Why Should We Have a Local-Global Theorem?

The number of spheres in P with bend at most N (counted with
multiplicity) is asymptotically equal to a constant times Nδ, where
δ = the Hausdorff dimension of the closure of P.

δ ≈ 2.4739 . . .

Thus, we would would expect that the multiplicity of a given
admissible bend up to N is roughly Nδ−1 ≈ N1.4739 ≥ 1, so we
should expect that every sufficiently large admissible number
should be represented.
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My Dissertation Research

Prove a local-global principle for bends of more general sphere
packings (called crystallographic sphere packings).

Figure: A crystallographic (more
specifically, an orthoplicial)
packing made by Kei
Nakamura. Proven by Dias and
Nakamura to have a local-global
principle for bends.

Figure: A fundamental domain
of a crystallographic packing
made by Arseniy (Senia)
Sheydvasser. Not yet proven to
have a local-global principle for
bends.

Edna Jones Packings and Integers



Main References

Jean Bourgain and Alex Kontorovich, “On the local-global
conjecture for integral Apollonian gaskets,” Inventiones
mathematicae, volume 196, pp. 589–650, 2014.

Some pictures used in this presentation related to Apollonian circle
packings are from this paper.

Alex Kontorovich, “From Apollonius to Zaremba: Local-global
phenomena in thin orbits,” Bulletin of the American Mathematical
Society, volume 50, number 2, pp. 187-228, 2013,
https://www.ams.org/journals/bull/2013-50-02/

S0273-0979-2013-01402-2/.

Some pictures used in this presentation related to Apollonian circle
packings are from this paper.

Alex Kontorovich, “The Local-Global Principle for Integral Soddy
Sphere Packings,” Journal of Modern Dynamics, volume 15, pp.
209-236, 2019, https:
//www.aimsciences.org/article/doi/10.3934/jmd.2019019.

Most pictures used in this presentation related to Soddy sphere
packings are from this paper.

Edna Jones Packings and Integers

https://www.ams.org/journals/bull/2013-50-02/S0273-0979-2013-01402-2/
https://www.ams.org/journals/bull/2013-50-02/S0273-0979-2013-01402-2/
https://www.aimsciences.org/article/doi/10.3934/jmd.2019019
https://www.aimsciences.org/article/doi/10.3934/jmd.2019019


Thank you for listening!
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Proof Outline for Bourgain’s and Kontorovich’s Apollonian
Circle Packing Result

1 Show that Γ contains the congruence subgroup Γ(2) of
PSL2(Z). This shows that the set of bends contains the
primitive values of a shifted binary (2-variable) quadratic form.

2 This shifted binary quadratic form gives you enough to work
with so that you can apply the circle method (with some
other tools used in the major arc and minor arc analyses) to
obtain an “almost all” statement.
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Proof Outline for Kontorovich’s Soddy Sphere Packing
Result

1 Show that Γ contains a congruence subgroup Ξ of SL2(C).
This shows that the set of bends contains the “primitive”
values of a shifted quaternary (4-variable) quadratic form.

2 This shifted quaternary quadratic form gives you enough to
work with so that you can apply the circle method to show
that every sufficiently large admissible number is represented
as a bend.
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Congruence Subgroup of SL2(C)

Lemma

Γ contains (up to an isomorphism) the congruence subgroup{(
α β
γ δ

)
∈ PSL2(O) : β, γ ≡ 0 (mod %)

}
,

where O = Z[ω], ω = eπi/3, and % = 1 + ω.
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