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Apollonian circle packings: The construction

Given three pairwise tangent circles with disjoint points of
tangency, there are exactly two circles tangent to the given ones.
(Proved by Apollonius of Perga.)
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Apollonian circle packings: The construction

Figure: An Apollonian circle packing.
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Apollonian circle packings

Figure: An Apollonian circle
packing.

Label on circle:
bend = 1/radius

What do you notice about
the bends that you can see in
this Apollonian circle
packing?

They are all integers.

Why?
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Apollonian circle packings

Figure: An Apollonian circle
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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bend = 1/radius
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Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.

If b1, b2, b3, b4 are bends of
four pairwise tangent
circles, then

b21 + b22 + b23 + b24

=
1

2
(b1 + b2 + b3 + b4)

2.
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Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If b1, b2, b3, b4 are bends of four pairwise tangent circles, then

(b1 + b2 + b3 + b4)
2 = 2(b21 + b22 + b23 + b24).

Example

0

0

1 1

4

4 b1 = 0, b2 = b3 = 1, b4 = 4

(0 + 1 + 1 + 4)2 = 62 = 36

2(02 + 12 + 12 + 42) = 2(18) = 36
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Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If b1, b2, b3, b4 are bends of four pairwise tangent circles, then

(b1 + b2 + b3 + b4)
2 = 2(b21 + b22 + b23 + b24).

Example

b1 = −11, b2 = 21, b3 = 24, b4 = 28

(−11 + 21 + 24 + 28)2 = 622 = 3844

2((−11)2 + 212 + 242 + 282) = 2(1922) = 3844
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Descartes circle theorem

Theorem (Descartes Circle Theorem, 1643)

If b1, b2, b3, b4 are bends of four pairwise tangent circles, then

(b1 + b2 + b3 + b4)
2 = 2(b21 + b22 + b23 + b24).

Fix b1, b2, b3. What do we know about the solutions for b4?

If b4 and b′4 are solutions for fixed b1, b2, b3, then, by the quadratic
formula,

b4 + b′4 = 2(b1 + b2 + b3).
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Matrices and geometry

b′4 = 2b1 + 2b2 + 2b3 − b4

Matrix form:
b1
b2
b3
b′4

 =


1

1
1

2 2 2 −1


︸ ︷︷ ︸

M4


b1
b2
b3
b4



Figure: Four tangent circles
and a reflection to a fifth
circle.
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Matrices and the Apollonian group

M1 =


−1 2 2 2

1
1

1

 , M2 =


1
2 −1 2 2

1
1

 ,

M3 =


1

1
2 2 −1 2

1

 , M4 =


1

1
1

2 2 2 −1

 .

The Apollonian group Γ := ⟨M1,M2,M3,M4⟩ (set of products of
M1,M2,M3,M4)

maps bends of an Apollonian circle packing to more bends of
the packing,

“generates” all bends of the packing from four bends, and

sends integer vectors to integer vectors.

Edna Jones Packings and integers



Matrices and the Apollonian group

M1 =


−1 2 2 2

1
1

1

 , M2 =


1
2 −1 2 2

1
1

 ,

M3 =


1

1
2 2 −1 2

1

 , M4 =


1

1
1

2 2 2 −1

 .

The Apollonian group Γ := ⟨M1,M2,M3,M4⟩ (set of products of
M1,M2,M3,M4)

maps bends of an Apollonian circle packing to more bends of
the packing,

“generates” all bends of the packing from four bends, and

sends integer vectors to integer vectors.

Edna Jones Packings and integers



Integrality of bends

The Apollonian group Γ := ⟨M1,M2,M3,M4⟩
maps bends of an Apollonian circle packing to more bends of
the packing,

“generates” all bends of the packing from four bends, and

sends integer vectors to integer vectors.

Since we started with an integer vector of bends
(namely, (−11, 21, 24, 28)⊤), all of our bends are integers!

Which integers appear as bends?

Are there any congruence or local
obstructions?
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Local obstructions modulo 24

Theorem (Fuchs, 2011)

For an integral, primitive Apollonian circle packing, there are local
obstructions modulo 24 for the bends of the packing.
(The local obstructions depend on the packing.)

Example

each bend
≡ 0, 4, 12, 13, 16, or 21 (mod 24) .
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Admissible integers

Definition (Admissible integers for Apollonian circle packings)

Let P be an integral Apollonian circle packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some circle in P (mod q) .

Equivalently, m is admissible if m has no local obstructions to
being the bend of a circle in the packing.
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Admissible integers

Theorem (Fuchs, 2011)

An integer m is admissible if and only if m is in certain congruence
classes modulo 24.
(The congruence classes depend on the packing.)

Example

m is admissible ⇐⇒
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24).
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(Strong asymptotic) local-global conjecture

Conjecture (Graham–Lagarias–Mallows–Wilks–Yan, 2003)

The bends of a fixed primitive, integral Apollonian circle packing P
satisfy a (strong asymptotic) local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a circle in the packing.

Example

Mathematicians thought that if
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24)
and m is sufficiently large,
then m is the bend of a circle in the
packing.
We do not have a proof of this!
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Why did we have a (strong asymptotic) local-global
conjecture?

Theorem (Kontorovich–Oh, 2011)

The number of circles in an Apollonian circle packing P with bend
at most N (counted with multiplicity) is asymptotically equal to a
constant times Nδ, where δ = the Hausdorff dimension of the
closure of P.

For Apollonian circle packings, we have

δ ≈ 1.30568 . . .

Thus, we would would expect the multiplicity of a given admissible
bend up to N to be roughly Nδ−1 ≈ N0.30568 ≥ 1, so we expected
every sufficiently large admissible number to be represented.
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The best we can prove right now towards the conjecture

Theorem (Bourgain–Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the
Apollonian circle packing P. Quantitatively, the number of
exceptions up to N is bounded above by cN1−η, where c , η > 0 are
constants only dependent on the packing.

f (N)

N

cN1−η

≈ (fraction of admissible classes) · N

Extended by Fuchs, Stange, and Zhang to certain other circle
packings.
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Theorem (Haag–Kertzer–Rickards–Stange, 2023)

Certain quadratic and quartic families of bends (of the form cn2

and cn4 for a fixed integer c) are missing from some Apollonian
circle packings.

Example

An integer of the form n2 or 3n2

(where n is an integer) cannot
appear as the bend of a circle in
this packing.
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The (strong asymptotic) local-global conjecture is false

Theorem (Haag–Kertzer–Rickards–Stange, 2023)

Certain quadratic and quartic families of bends (of the form cn2

and cn4 for a fixed integer c) are missing from some Apollonian
circle packings.

Example

An integer of the form n2 or 3n2

(where n is an integer) cannot
appear as the bend of a circle in
this packing.

There are infinitely many admissible integers
m ≡ 0, 4, 12, 16 (mod 24) that are of the form n2 or 3n2.
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Updated (strong asymptotic) local-global conjecture

Conjecture (Haag–Kertzer–Rickards–Stange, 2023)

There is an N0 = N0(P) so that, if m > N0, m is admissible and is
not obstructed by any known quadratic or quartic obstructions,
then m is the bend of a circle in the packing.

Example

It is now thought that if
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24),
m is sufficiently large, and m is not
of the form n2 or 3n2, then m is the
bend of a circle in the packing.
We do not have a proof of this!
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Soddy sphere packings: The construction

Given four pairwise tangent spheres with disjoint points of
tangency, there are exactly two spheres tangent to the given ones.

Figure: Four tangent spheres. Figure: Four tangent spheres
with two additional tangent
spheres.
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Soddy sphere packings: The construction

Figure: Four
tangent
spheres.

Figure: Four
tangent spheres
with two more
spheres.

Figure: More
spheres.

Figure: A Soddy
sphere packing.
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Soddy sphere packings

Figure: A Soddy sphere packing.

Label on sphere:
bend = 1/radius

What do you notice about
the bends that you can see in
this Soddy sphere packing?

They are all integers.

Why?
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Soddy sphere packings

Figure: A Soddy sphere packing.

Label on sphere:
bend = 1/radius

What do you notice about
the bends that you can see in
this Soddy sphere packing?

They are all integers.

Why?
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“The Kiss Precise” (Part 2)

Figure: The last stanza of “The
Kiss Precise” by F. Soddy in
Nature, 1936.

If b1, b2, b3, b4, b5 are
bends of five pairwise
tangent spheres, then

(b1 + b2 + b3 + b4 + b5)
2

= 3(b21 + b22 + b23 + b24 + b25).
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Figure: The last stanza of “The
Kiss Precise” by F. Soddy in
Nature, 1936.

If b1, b2, b3, b4, b5 are
bends of five pairwise
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(b1 + b2 + b3 + b4 + b5)
2
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Soddy quadratic form

If b1, b2, b3, b4, b5 are bends of five pairwise tangent spheres, then

(b1 + b2 + b3 + b4 + b5)
2 = 3(b21 + b22 + b23 + b24 + b25).

Fix b1, b2, b3, b4. What do we know about the solutions for b5?

If b5 and b′5 are solutions for fixed b1, b2, b3, b4, then, by the
quadratic formula,

b5 + b′5 = b1 + b2 + b3 + b4.
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Soddy quadratic form

If b1, b2, b3, b4, b5 are bends of five pairwise tangent spheres, then

(b1 + b2 + b3 + b4 + b5)
2 = 3(b21 + b22 + b23 + b24 + b25).

Fix b1, b2, b3, b4. What do we know about the solutions for b5?

If b5 and b′5 are solutions for fixed b1, b2, b3, b4, then, by the
quadratic formula,

b5 + b′5 = b1 + b2 + b3 + b4.
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Matrices and geometry

b′5 = b1 + b2 + b3 + b4 − b5

Matrix form:
b1
b2
b3
b4
b′5

 =


1

1
1

1
1 1 1 1 −1


︸ ︷︷ ︸

M5


b1
b2
b3
b4
b5



Figure: Five tangent spheres
and a reflection to a sixth
sphere.
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Matrices and the Soddy group

M1 =


−1 1 1 1 1

1
1

1
1

 , M2 =


1
1 −1 1 1 1

1
1

1

 , M3 =


1

1
1 1 −1 1 1

1
1

 ,

M4 =


1

1
1

1 1 1 −1 1
1

 , M5 =


1

1
1

1
1 1 1 1 −1



The Soddy group Γ := ⟨M1,M2,M3,M4,M5⟩ (set of products of
M1,M2,M3,M4,M5)

maps bends of a Soddy sphere packing to more bends of the
packing,

“generates” all bends of the packing from five bends, and

sends integer vectors to integer vectors.
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The Soddy group Γ := ⟨M1,M2,M3,M4,M5⟩ (set of products of
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maps bends of a Soddy sphere packing to more bends of the
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Integrality of bends

The Soddy group Γ := ⟨M1,M2,M3,M4,M5⟩
maps bends of a Soddy sphere packing to more bends of the
packing,

“generates” all bends of the packing from five bends, and

sends integer vectors to integer vectors.

Since we started with an integer vector of five bends (namely,
(−11, 21, 25, 27, 28)⊤), all of our bends are integers!

Which integers appear as bends?

Are there any congruence or local
obstructions?
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Local obstructions modulo 3

Lemma (Kontorovich, 2019)

For an integral, primitive Soddy sphere packing P, there is an
ε(P) ∈ {1, 2} such that each bend of the packing is

≡ 0 or ε(P) (mod 3) .

Example

each bend ≡ 0 or 1 (mod 3) .

Edna Jones Packings and integers



Admissible integers

Definition (Admissible integers for Soddy sphere packings)

Let P be an integral Soddy sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some sphere in P (mod q) .

Equivalently, m is admissible if m has no local obstructions to
being the bend of a sphere in the packing.
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Admissible integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing P if
and only if

m ≡ 0 or ε(P) (mod 3) ,

where ε(P) ∈ {1, 2} depends only on the packing.

Example

m is admissible ⇐⇒
m ≡ 0 or 1 (mod 3).
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A (strong asymptotic) local-global principle

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing P
satisfy a (strong asymptotic) local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a sphere in the packing.

Example

If m ≡ 0 or 1 (mod 3) and m is
sufficiently large, then m is the bend
of a sphere in the packing.
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Why should we have a (strong asymptotic) local-global
principle?

Theorem (Kim, 2015)

Let P be a certain type of (n − 1)-sphere packing (called a
Kleinian sphere packing) in dimension n ≥ 2.
The number of spheres in P with bend at most N (counted with
multiplicity) is asymptotically equal to a constant times Nδ, where
δ = the Hausdorff dimension of the closure of P.

For Soddy sphere packings, we have

δ ≈ 2.4739 . . .

Thus, we would would expect the multiplicity of a given admissible
bend up to N to be roughly Nδ−1 ≈ N1.4739 ≥ 1, so we should
expect every sufficiently large admissible number to be represented.
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(Strong asymptotic) local-global principles

Goal: Prove (strong asymptotic) global principles for certain
integral Kleinian sphere packings, that is, prove:
If m is admissible and sufficiently large, then m is the bend of
an (n − 1)-sphere in the packing.

Definition (Admissible integers)

Let P be an integral Kleinian sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some (n − 1)-sphere in P (mod q) .
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My original dissertation research problem

Goal: Prove (strong asymptotic) local-global principles for bends
of certain integral Kleinian sphere packings in dimension at least 3.

Figure: An integral
Soddy sphere
packing. Image by
Nicolas Hannachi.

Figure: An integral
Kleinian (more
specifically, an
orthoplicial) sphere
packing. Image by
Kei Nakamura.

Figure: A
fundamental domain
of an integral
Kleinian sphere
packing. Image by
Arseniy (Senia)
Sheydvasser.
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What actually became my dissertation

In my dissertation, I developed a tool that could potentially be
used to prove (strong asymptotic) local-global principles for
bends of certain integral Kleinian sphere packings.

This tool is a technical version of the circle method.

The circle method is used to provide an asymptotic formula
for the number of ways an integer is represented by an
integer-valued function on Zr (such as an integral quadratic
form).
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Illustrations credits

Besides the illustrations previously credited and a few Apollonian circle
packing construction illustrations created by the presenter, the
illustrations for this talk came from the following papers:

Jean Bourgain and Alex Kontorovich, “On the local-global
conjecture for integral Apollonian gaskets,”Inventiones
mathematicae, volume 196, pp. 589–650, 2014.

Alex Kontorovich, “From Apollonius to Zaremba: Local-global
phenomena in thin orbits,”Bulletin of the American Mathematical
Society, volume 50, number 2, pp. 187-228, 2013,
https://www.ams.org/journals/bull/2013-50-02/

S0273-0979-2013-01402-2/.

Alex Kontorovich, “The Local-Global Principle for Integral Soddy
Sphere Packings,”Journal of Modern Dynamics, volume 15, pp.
209-236, 2019, https:
//www.aimsciences.org/article/doi/10.3934/jmd.2019019.
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Thank you for listening!
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Proof outline for Bourgain’s and Kontorovich’s Apollonian
circle packing result

1 Show that the automorphism group of the Apollonian circle
packing contains the congruence subgroup Γ(2) of PSL2(Z),
and Γ(2) is the stabilizer of a particular circle. This implies
that the set of bends contains primitive values of a shifted
binary (2-variable) quadratic form. (Sarnak, 2007)

2 The shifted binary quadratic form gives you enough to work
with so that you can apply the circle method (with some
other tools, including spectral theory, used in the major arc
and minor arc analyses) to obtain an “almost all” statement.
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Proof outline for Kontorovich’s Soddy sphere packing
result

1 Show that the Soddy group contains a congruence subgroup
of PSL2(Z[eπi/3]), and this congruence subgroup maps a
particular sphere to itself. This implies that the set of bends
contains “primitive” values of a shifted quaternary (4-variable)
quadratic form.

2 The shifted quaternary quadratic form gives you enough to
work with so that you can quote the circle method to show
that every sufficiently large admissible number is represented
by the quadratic form without the primitivity restriction.

3 Show that the singular series (with the primitivity restriction)
is bounded away from zero when m is admissible.
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Figure: Apollonian circle packing as the limit set of Γ.
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Action of Isom(Hn+1) extends continuously to

R̂n = Rn ∪ {∞}, the boundary of Hn+1.

Γ stabilizes P (i.e., Γ maps P to itself).
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