The circle method

Edna Jones

Duke University

35th Automorphic Forms Workshop May 22, 2023

What is the circle method?

• Typically refers to the Hardy-Littlewood circle method

What is the circle method?

- Typically refers to the Hardy-Littlewood circle method
- May also refer to other methods that are used to provide an asymptotic formula for the number of ways an integer is represented by an integer-valued function on Z^s
 - Kloosterman circle method
 - The delta method

What is the circle method?

- Typically refers to the Hardy-Littlewood circle method
- May also refer to other methods that are used to provide an asymptotic formula for the number of ways an integer is represented by an integer-valued function on Z^s
 - Kloosterman circle method
 - The delta method

Definition (Representation number)

$$R_F(n) = \#\{\mathbf{m} \in \mathbb{Z}^s : F(\mathbf{m}) = n\}$$

- Originally developed by Hardy and Ramanujan (1918) to provide asymptotic formula for the partition function p(n), the number of partitions of n
- Proved that

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi \sqrt{\frac{2n}{3}}\right)$$

Partition function & modularity

$$f(z) = \sum_{n=0}^{\infty} p(n) e(nz),$$

where $e(z) = e^{2\pi i z}$ and Im(z) > 0.

A ≥ ►

Partition function & modularity

$$f(z) = \sum_{n=0}^{\infty} p(n) e(nz),$$

where $e(z) = e^{2\pi i z}$ and Im(z) > 0.

$$f(z)=\frac{\mathrm{e}(z/24)}{\eta(z)},$$

where $\eta(z)$ is the Dedekind eta function

$$\eta(z) = \mathrm{e}\left(\frac{z}{24}\right) \prod_{m=1}^{\infty} (1 - \mathrm{e}(mz)).$$

Hardy and Ramanujan used the modularity of η to obtain the asymptotic formula.

Hardy-Littlewood circle method & partition function

$$f(z) = \sum_{n=0}^{\infty} p(n) e(nz)$$

$$F(q) = \sum_{n=0}^{\infty} p(n)q^n$$

where q = e(z).

Hardy-Littlewood circle method & partition function

$$f(z) = \sum_{n=0}^{\infty} p(n) e(nz) \qquad \qquad F(q) = \sum_{n=0}^{\infty} p(n)q^n$$

where q = e(z). Using the Cauchy integral formula, we find that

$$p(n) = \frac{1}{2\pi i} \int_{|q|=r} \frac{F(q)}{q^{n+1}} dq,$$

where 0 < r < 1.

Hardy-Littlewood circle method & partition function

$$f(z) = \sum_{n=0}^{\infty} p(n) e(nz) \qquad \qquad F(q) = \sum_{n=0}^{\infty} p(n)q^n$$

where q = e(z). Using the Cauchy integral formula, we find that

$$p(n) = \frac{1}{2\pi i} \int_{|q|=r} \frac{F(q)}{q^{n+1}} dq,$$

where 0 < r < 1. Changing q into e(x + iy), we obtain

$$p(n) = \int_0^1 f(x+iy) e(-n(x+iy)) dx,$$

where y > 0.

Partition function

Figure: Modulus of $\prod_{m=1}^{\infty}(1-q^m)$ with |q| < 1. From Wikipedia.

Main contribution to integral from points near e(a/q) where q is small.

Split [0,1] into major arcs \mathfrak{M} and minor arcs \mathfrak{m} .

Split [0,1] into major arcs \mathfrak{M} and minor arcs \mathfrak{m} .

$$\mathfrak{M} = \left\{ x \in [0,1] : x ext{ is ``close to''} rac{a}{q}, a,q \in \mathbb{Z}, 0 < q \leq Q
ight\}.$$

How close depends on the application of the method.

Split [0,1] into major arcs \mathfrak{M} and minor arcs \mathfrak{m} .

$$\mathfrak{M} = \left\{ x \in [0,1] : x ext{ is ``close to''} rac{a}{q}, a,q \in \mathbb{Z}, 0 < q \leq Q
ight\}.$$

How close depends on the application of the method.

$$\mathfrak{m} = [0,1] \setminus \mathfrak{M}.$$

Example of major arcs \mathfrak{M} when Q = 3 for the Hardy-Littlewood circle method:

$$p(n) = \int_{0}^{1} f(x + iy)e(-n(x + iy)) dx$$

= $\int_{0}^{1} f(x + iy)e(-n(x + iy)) dx + \int_{m} f(x + iy)e(-n(x + iy)) dx$

Real quadratic forms

F is a real quadratic form in s variables \iff For all $\mathbf{m} \in \mathbb{R}^{s}$,

$$F(\mathbf{m}) = \frac{1}{2}\mathbf{m}^{\top}A\mathbf{m},$$

where A is a real symmetric $s \times s$ matrix and is the Hessian matrix of F.

Example (Example of a quadratic form in 2 variables)

$$F(\mathbf{m}) = m_1^2 + m_1 m_2 + m_2^2$$
$$= \frac{1}{2} \mathbf{m}^\top \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \mathbf{m}$$

Definition (Integral quadratic form)

A quadratic form F is **integral** if $F(\mathbf{m}) \in \mathbb{Z}$ for all $\mathbf{m} \in \mathbb{Z}^s$.

Definition (Positive definite quadratic form)

A quadratic form F is **positive definite** if $F(\mathbf{m}) > 0$ for all $\mathbf{m} \in \mathbb{R}^s \setminus \{\mathbf{0}\}.$

Examples (Examples of integral positive definite quadratic forms)

•
$$f_4(\mathbf{m}) = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

•
$$x^2 + xy + y^2$$

Want an asymptotic formula for $R_F(n)$ when F is a positive definite quadratic form.

Want an asymptotic formula for $R_F(n)$ when F is a positive definite quadratic form.

Use same overall method for obtaining an asymptotic formula for the partition function.

Note that the theta function

$$\Theta(z) = \sum_{n=0}^{\infty} R_F(n) e(nz)$$

is an automorphic form.

Singular series $\mathfrak{S}_F(n)$

$$\mathfrak{S}_{F}(n) = \sum_{q=1}^{\infty} \frac{1}{q^{s}} \sum_{d \in (\mathbb{Z}/q\mathbb{Z})^{\times}} \sum_{\mathbf{h} \in (\mathbb{Z}/q\mathbb{Z})^{s}} e^{\left(\frac{d}{q} \left(F(\mathbf{h}) - n\right)\right)}$$

The singular series $\mathfrak{S}_F(n)$ contains information about $F(\mathbf{m}) \equiv n \pmod{q}$ for all positive integers q.

 $\mathfrak{S}_F(n) \equiv 0 \iff$ there exists a positive integer q such that $F(\mathbf{m}) \equiv n \pmod{q}$ has no solutions

An asymptotic for representation numbers from Hardy-Littlewood circle method

Theorem (Kloosterman, 1924)

Suppose that n is a positive integer. Suppose that F is a positive definite integral quadratic form in $s \ge 5$ variables. Let $A \in M_s(\mathbb{Z})$ be the Hessian matrix of F. Then the number of integral solutions to $F(\mathbf{m}) = n$ is

$$R_{F}(n) = \mathfrak{S}_{F}(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{\frac{s}{2}-1} + O_{F,\varepsilon}\left(n^{\frac{s}{4}+\varepsilon} + n^{\frac{s}{2}-\frac{5}{4}+\varepsilon}\right)$$

for any $\varepsilon > 0$.

- Want a better error term in asymptotic formula for $R_F(n)$ when F is a positive definite quadratic form.
- Split [0,1] differently.

For $Q \ge 1$, the **Farey sequence** \mathfrak{F}_Q of order Q is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \le q \le Q$ and gcd(a,q) = 1.

$$Q = 1$$

$$\downarrow$$
 0
 1

 $\frac{1}{1}$

For $Q \ge 1$, the **Farey sequence** \mathfrak{F}_Q of order Q is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \le q \le Q$ and gcd(a,q) = 1.

Q = 2

For $Q \ge 1$, the **Farey sequence** \mathfrak{F}_Q of order Q is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \le q \le Q$ and gcd(a,q) = 1.

Q = 3

For $Q \ge 1$, the **Farey sequence** \mathfrak{F}_Q of order Q is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \le q \le Q$ and gcd(a,q) = 1.

Q = 3

Example of Farey dissection when Q = 3:

An asymptotic for representation numbers from the Kloosterman method

Theorem

Suppose that n is a positive integer. Suppose that F is a positive definite integral quadratic form in $s \ge 4$ variables. Let $A \in M_s(\mathbb{Z})$ be the Hessian matrix of F. Then the number of integral solutions to $F(\mathbf{m}) = n$ is

$$R_F(n) = \mathfrak{S}_F(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{\frac{s}{2}-1} + O_{F,\varepsilon}\left(n^{\frac{s-1}{4}+\varepsilon}\right)$$

for any $\varepsilon > 0$.

Kloosterman proved this (with a worse error term) in 1926 for diagonal quadratic forms ($F(\mathbf{m}) = a_1 m_1^2 + \cdots + a_s m_s^2$), using what is now called the Kloosterman circle method.

Example of major arcs when Q = 3 for the Hardy-Littlewood circle method:

Example of Farey dissection when Q = 3 for the Kloosterman circle method:

Hardy-Littlewood:

$$R_{F}(n) = \mathfrak{S}_{F}(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{\frac{s}{2}-1} + O_{F,\varepsilon}\left(n^{\frac{s}{4}+\varepsilon} + n^{\frac{s}{2}-\frac{5}{4}+\varepsilon}\right)$$

Kloosterman:

$$R_{F}(n) = \mathfrak{S}_{F}(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{\frac{s}{2}-1} + O_{F,\varepsilon}\left(n^{\frac{s-1}{4}+\varepsilon}\right)$$

Rewrite δ(n), the indicator function for zero, using bump functions

- Rewrite δ(n), the indicator function for zero, using bump functions
- More versatile than Kloosterman circle method

- Rewrite $\delta(n)$, the indicator function for zero, using bump functions
- More versatile than Kloosterman circle method
- Has been used for a variety of applications, including
 - Asymptotic formulas for the representation numbers of quadratic forms (Heath-Brown)
 - Subconvexity bounds for (twists of) automorphic forms (Munshi)

Definition (Representation number)

$$\mathsf{R}_{\mathsf{F}}(n) = \#\{\mathbf{m} \in \mathbb{Z}^s : \mathsf{F}(\mathbf{m}) = n\}$$

$$R_F(n) = \sum_{\mathbf{m} \in \mathbb{Z}^s} \mathbf{1}_{\{F(\mathbf{m})=n\}},$$

where $\mathbf{1}_{\{F(\mathbf{m})=n\}}$ is the indicator function

$$\mathbf{1}_{\{F(\mathbf{m})=n\}} = \begin{cases} 1 & \text{if } F(\mathbf{m}) = n, \\ 0 & \text{otherwise.} \end{cases}$$

▲ 同 ▶ → 三 ▶

Indicator function

$$\delta(n) = \mathbf{1}_{\{n=0\}} = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Indicator function

$$\delta(n) = \mathbf{1}_{\{n=0\}} = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{1}_{\{F(\mathbf{m})=n\}} = \delta(F(\mathbf{m}) - n)$$

Indicator function

$$\delta(n) = \mathbf{1}_{\{n=0\}} = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{1}_{\{F(\mathbf{m})=n\}} = \delta(F(\mathbf{m}) - n)$$

$$R_F(n) = \sum_{\mathbf{m} \in \mathbb{Z}^s} \delta(F(\mathbf{m}) - n)$$

Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on \mathbb{R} is denoted by $C_c^{\infty}(\mathbb{R})$. A function $w \in C_c^{\infty}(\mathbb{R})$ is called a **bump function**.

Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on \mathbb{R} is denoted by $C_c^{\infty}(\mathbb{R})$. A function $w \in C_c^{\infty}(\mathbb{R})$ is called a **bump function**.

Require w(0) = 0 and $\sum_{q=1}^{\infty} w(q) \neq 0$ for the delta method.

Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on \mathbb{R} is denoted by $C_c^{\infty}(\mathbb{R})$. A function $w \in C_c^{\infty}(\mathbb{R})$ is called a **bump function**.

Require w(0) = 0 and $\sum_{q=1}^{\infty} w(q) \neq 0$ for the delta method.

If n is an integer, then

$$\delta(n) = \frac{1}{\sum_{q=1}^{\infty} w(q)} \sum_{q|n} \left(w(q) - w\left(\frac{|n|}{q}\right) \right),$$

where the sum over $q \mid n$ is taken to be the sum over the positive divisors of n.

• Asymptotic formula for the partition function (Hardy-Ramanujan)

- Asymptotic formula for the partition function (Hardy–Ramanujan)
- Waring's problem (Vaughan, Wooley)

- Asymptotic formula for the partition function (Hardy–Ramanujan)
- Waring's problem (Vaughan, Wooley)
- Asymptotic formulas for the representation numbers of quadratic forms (Kloosterman, Heath-Brown)

- Asymptotic formula for the partition function (Hardy–Ramanujan)
- Waring's problem (Vaughan, Wooley)
- Asymptotic formulas for the representation numbers of quadratic forms (Kloosterman, Heath-Brown)
- Subconvexity bounds for (twists of) automorphic forms (Munshi)

Thank you for listening!

Lemma for Kloosterman circle method

Lemma

Let $f : \mathbb{R} \to \mathbb{C}$ be a periodic function of period 1 and with real Fourier coefficients (so that $\overline{f(x)} = f(-x)$ for all $x \in \mathbb{R}$). Then

$$\int_0^1 f(x) \, dx = 2 \operatorname{Re} \left(\sum_{\substack{1 \le q \le Q \\ q \le Q \le q}} \int_0^{\frac{1}{qQ}} \sum_{\substack{Q < d \le q+Q \\ qdx < 1 \\ \gcd(d,q) = 1}} f\left(x - \frac{d^*}{q}\right) \, dx \right),$$

where d^* is the multiplicative inverse of d modulo q.

Use this for

$$f(x) = \sum_{\mathbf{m} \in \mathbb{Z}^s} \mathrm{e}((x + iy)(F(\mathbf{m}) - n)),$$

where y > 0.