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Partitions of a positive integer

Definition (Partition of a positive integer)

Let n be a positive integer. A partition of n is a way to write n as
the sum of positive integers, where the order of the summands
does not matter.

Example (Partitions of 5)

5 2 + 2 + 1

4 + 1 2 + 1 + 1 + 1

3 + 2 1 + 1 + 1 + 1 + 1

3 + 1 + 1
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Number of partitions of n

For a positive integer n, let p(n) be the number of partitions of n.
By convention, p(0) = 1.

Example (Partitions of 5)

5 2 + 2 + 1

4 + 1 2 + 1 + 1 + 1

3 + 2 1 + 1 + 1 + 1 + 1

3 + 1 + 1

=⇒ p(5) = 7

How does p(n) grow as n → ∞?
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Generating functions

Definition

The (ordinary) generating function for the sequence (an)
∞
n=0 is

∞∑
n=0

anq
n.

Example (Generating function for (1, 1, 1, . . .))

The generating function for the sequence (1, 1, 1, . . .) is

1 + q + q2 + q3 + · · · =
∞∑
k=0

qk =
1

1− q

if |q| < 1.
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Generating functions

Definition

The (ordinary) generating function for the sequence (an)
∞
n=0 is

∞∑
n=0

anq
n.

Example (Generating function for (p(n))∞n=0)

∞∑
n=0

p(n)qn =
∞∏
k=1

(q0·k + q1·k + q2·k + q3·k + · · · )

=
∞∏
k=1

1

1− qk

for |q| < 1.
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What is the circle method?

A collection of techniques for using the analytic properties of
the generating function of a sequence to obtain an asymptotic
formula for the sequence

Typically refers to the Hardy–Littlewood circle method

May also refer to other methods that are used to provide an
asymptotic formula for the number of ways an integer is
represented by an integer-valued function (like a quadratic
form) on Zs

Kloosterman circle method
The delta(-symbol) method
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Hardy–Littlewood circle method

Originally developed by Hardy and Ramanujan (1918) to
provide asymptotic formula for the partition function p(n)

Proved that

p(n) ∼ 1

4n
√
3
exp

(
π

√
2n

3

)
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Partition function & modularity

f (z) =
∞∑
n=0

p(n)e(nz) ,

where e(z) = e2πiz and Im(z) > 0.

f (z) =
e(z/24)

η(z)
,

where η(z) is the Dedekind eta function

η(z) = e
( z

24

) ∞∏
m=1

(1− e(mz)).

Hardy and Ramanujan used the modularity of η to obtain the
asymptotic formula.
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Hardy–Littlewood circle method & partition function

f (z) =
∞∑
n=0

p(n)e(nz) F (q) =
∞∑
n=0

p(n)qn

where q = e(z).

Using the Cauchy integral formula, we find that

p(n) =
1

2πi

∫
|q|=r

F (q)

qn+1
dq,

where 0 < r < 1.
Changing q into e(x + iy), we obtain

p(n) =

∫ 1

0
f (x + iy)e(−n(x + iy)) dx ,

where y > 0 is such that r = e−2πy .
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Partition function

Figure: Modulus of
∏∞

m=1(1− qm) with |q| < 1. From Wikipedia.

Main contribution to integral from points near e(a/q) where q is
small (a, q ∈ Z, q > 0).
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Major arcs and minor arcs

Split [0, 1] into major arcs M and minor arcs m.

M =

{
x ∈ [0, 1] : x is “close to”

a

q
, a, q ∈ Z, 0 < q ≤ Q

}
.

How close depends on the application of the method.

m = [0, 1] \M.
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Example of major arcs M when Q = 3 for the Hardy–Littlewood
circle method:

0
1

1
1

1
2

1
3

2
3

p(n) =

∫ 1

0
f (x + iy)e(−n(x + iy)) dx

=

∫
M
f (x + iy)e(−n(x + iy)) dx︸ ︷︷ ︸

main term

+

∫
m
f (x + iy)e(−n(x + iy)) dx︸ ︷︷ ︸

error term
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Real quadratic forms

F is a real quadratic form in s variables ⇐⇒
For all m ∈ Rs ,

F (m) =
1

2
m⊤Am,

where A is a real symmetric s × s matrix and is the Hessian matrix
of F .

Example (Example of a quadratic form in 2 variables)

F (m) = m2
1 +m1m2 +m2

2

=
1

2
m⊤

(
2 1
1 2

)
m
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Quadratic form definitions

Definition (Integral quadratic form)

A quadratic form F is integral if F (m) ∈ Z for all m ∈ Zs .

Definition (Positive definite quadratic form)

A quadratic form F is positive definite if F (m) > 0 for all
m ∈ Rs \ {0}.

Examples (Examples of integral positive definite quadratic forms)

f4(m) = m2
1 +m2

2 +m2
3 +m2

4

x2 + xy + y2
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Hardy–Littlewood circle method & quadratic forms

Definition ((Unweighted) representation number)

RF (n) = #{m ∈ Zs : F (m) = n}

Want an asymptotic formula for RF (n) when F is a positive
definite quadratic form.

Use same overall method for obtaining an asymptotic formula for
the partition function.

Note that the theta function

Θ(z) =
∞∑
n=0

RF (n)e(nz)

is a modular form.
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Singular series SF (n)

SF (n) =
∏
p

σF ,p(n),

where σF ,p(n) is a p-adic density defined by

σF ,p(n) = lim
k→∞

#
{
m ∈ (Z/pkZ)s : F (m) ≡ n

(
mod pk

)}
p(s−1)k

.
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An asymptotic for representation numbers from
Hardy–Littlewood circle method

Theorem (Kloosterman, 1924)

Suppose that n is a positive integer.
Suppose that F is a positive definite integral quadratic form in
s ≥ 5 variables.
Let A ∈ Ms(Z) be the Hessian matrix of F .
Then the number of integral solutions to F (m) = n is

RF (n) = SF (n)
(2π)s/2

Γ(s/2)
√

det(A)
n

s
2
−1 + OF ,ε

(
n

s
4
+ε + n

s
2
− 5

4
+ε
)

for any ε > 0.
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Motivation for the Kloosterman circle method

Want a better error term in asymptotic formula for RF (n)
when F is a positive definite quadratic form.

Split [0, 1] differently.
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Farey sequence FQ of order Q

Definition

For Q ≥ 1, the Farey sequence FQ of order Q is the increasing
sequence of all reduced fractions a

q with 1 ≤ q ≤ Q and
gcd(a, q) = 1.

Q = 1

0
1

1
1

Example of Farey dissection when Q = 3:

0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
5

3
4
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0
1

1
1

1
2
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0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
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An asymptotic for representation numbers from the
Kloosterman method

Theorem

Suppose that n is a positive integer.
Suppose that F is a positive definite integral quadratic form in
s ≥ 4 variables.
Let A ∈ Ms(Z) be the Hessian matrix of F .
Then the number of integral solutions to F (m) = n is

RF (n) = SF (n)
(2π)s/2

Γ(s/2)
√
det(A)

n
s
2
−1 + OF ,ε

(
n

s−1
4

+ε
)

for any ε > 0.

Kloosterman proved this (with a worse error term) in 1926 for
diagonal quadratic forms (F (m) = a1m

2
1 + · · ·+ asm

2
s ), using what

is now called the Kloosterman circle method.
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Hardy–Littlewood vs. Kloosterman

Example of major arcs when Q = 3 for the Hardy–Littlewood circle
method:

0
1

1
1

1
2

1
3

2
3

Example of Farey dissection when Q = 3 for the Kloosterman
circle method:

0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
5

3
4
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Hardy–Littlewood vs. Kloosterman

Hardy–Littlewood:

RF (n) = SF (n)
(2π)s/2

Γ(s/2)
√

det(A)
n

s
2
−1 + OF ,ε

(
n

s
4
+ε + n

s
2
− 5

4
+ε
)

Kloosterman:

RF (n) = SF (n)
(2π)s/2

Γ(s/2)
√
det(A)

n
s
2
−1 + OF ,ε

(
n

s−1
4

+ε
)
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The delta method

Rewrite δ(n), the indicator function for zero, using bump
functions

More versatile than Kloosterman circle method

Developed by Duke, Friedlander, and Iwaniec in 1993 to
compute bounds for automorphic L-functions

Has been used for a variety of applications, including

Asymptotic formulas for weighted representation numbers of
quadratic forms (e.g., Heath-Brown, Dietmann, J.)
Subconvexity bounds for (twists of) automorphic forms (e.g.,
Munshi)
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(Unweighted) representation number

Definition ((Unweighted) representation number)

RF (n) = #{m ∈ Zs : F (m) = n}

RF (n) =
∑
m∈Zs

1{F (m)=n},

where 1{F (m)=n} is the indicator function

1{F (m)=n} =

{
1 if F (m) = n,

0 otherwise.
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Bump functions & weighted representation numbers

Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly
supported functions on Rs is denoted by C∞

c (Rs). A function
ψ ∈ C∞

c (Rs) is called a bump function.

Let ψ ∈ C∞
c (Rs).

For X > 0, define

ψX (m) = ψ

(
1

X
m

)
.

Definition (Weighted representation number)

RF ,ψ,X (n) =
∑
m∈Zs

1{F (m)=n}ψX (m)
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Indicator function

δ(n) = 1{n=0} =

{
1 if n = 0,

0 otherwise.

1{F (m)=n} = δ(F (m)− n)

=⇒


RF (n) =

∑
m∈Zs

δ(F (m)− n)

RF ,ψ,X (n) =
∑
m∈Zs

δ(F (m)− n)ψX (m)
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The delta method & bump functions

For the delta method, we require w ∈ C∞
c (R), w(0) = 0, and∑∞

q=1 w(q) ̸= 0.

If n is an integer, then

δ(n) =
1∑∞

q=1 w(q)

∑
q|n

(
w(q)− w

(
|n|
q

))
,

where the sum over q | n is taken to be the sum over the positive
divisors of n.
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The delta method & bump functions

Using the fact that

1

q

∑
a (mod q)

e

(
an

q

)
=

{
1 if q | n,
0 otherwise,

we have

δ(n) =
1∑∞

q=1 w(q)

∑
q|n

(
w(q)− w

(
|n|
q

))

=
1∑∞

q=1 w(q)

∞∑
q=1

1

q

∑
a (mod q)

e

(
an

q

)(
w(q)− w

(
|n|
q

))

if n is an integer.
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The delta method

δ(n) =
1∑∞

q=1 w(q)

∞∑
q=1

1

q

∑
a (mod q)

e

(
an

q

)(
w(q)− w

(
|n|
q

))

if n is an integer.
Bump functions are easier to handle analytically than the
discontinuous delta function, which helps when analyzing

RF (n) =
∑
m∈Zs

δ(F (m)− n) or

RF ,ψ,X (n) =
∑
m∈Zs

δ(F (m)− n)ψX (m).

Specifics depend on the application of the delta method.
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An asymptotic for weighted representation numbers

Theorem (Heath-Brown, 1996)

Suppose that n is an integer.
Suppose that F is a nonsingular integral quadratic form in s ≥ 4
variables.
Suppose that ψ ∈ C∞

c (Rs) is a bump function.
Then for ε > 0, the weighted representation number RF ,ψ,n1/2(n) is

RF ,ψ,n1/2(n) = SF (n)σF ,ψ,∞(n, n1/2)n
s
2
−1 + OF ,ψ,s,ε

(
n

s−1
4

+ε
)
,

where

σF ,ψ,∞(n,X ) = lim
ε→0+

1

2ε

∫
∣∣∣F (m)− n

X2

∣∣∣<ε ψ(m) dm.

Proof uses the delta method with a Kloosterman refinement.
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An asymptotic for weighted representation numbers

Theorem (J., 2024)

Suppose that n is a positive integer.
Suppose that F is a nonsingular integral quadratic form in s ≥ 4
variables.
Suppose that ψ ∈ C∞

c (Rs) is a bump function.
For ε > 0 and sufficiently large X , there is an asymptotic formula
for RF ,ψ,X (n) where the implicit constants only depend on ψ, s,
and ε.
(Other constants dependent on the quadratic form are explicitly
computed.)
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Used the Kloosterman circle method (and not the delta
method)

If F (m) = 1
2m

⊤Am, then explicit constants depend on the
eigenvalues of A and the smallest integer L such that
LA−1 ∈ Ms(Z).
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An asymptotic for weighted representation numbers

Theorem (J., 2024)

Suppose that n is a positive integer.
Suppose that F is a nonsingular integral quadratic form in s ≥ 4
variables.
Suppose that ψ ∈ C∞

c (Rs) is a bump function.
For ε > 0 and sufficiently large X , there is an asymptotic formula
for RF ,ψ,X (n) where the implicit constants only depend on ψ, s,
and ε.
(Other constants dependent on the quadratic form are explicitly
computed.)

Explicit constants are used in a variety of applications, including in
computations.
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Thank you for listening!
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My main theorem
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Corollary to my main theorem
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Lemma for Kloosterman circle method

Lemma

Let f : R → C be a periodic function of period 1 and with real
Fourier coefficients (so that f (x) = f (−x) for all x ∈ R). Then

∫ 1

0
f (x) dx = 2Re


∑

1≤q≤Q

∫ 1
qQ

0

∑
Q<d≤q+Q

qdx<1
gcd(d ,q)=1

f

(
x − d∗

q

)
dx

 ,

where d∗ is the multiplicative inverse of d modulo q.

Use this for

f (x) =
∑
m∈Zs

e((x + iy)(F (m)− n)) ,

where y > 0.
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