# The Kloosterman circle method and weighted representation numbers of positive definite quadratic forms

Edna Jones

Duke University

Number Theory Seminar Kansas State University February 1, 2023



### Sum of four squares

Which integers can be written (or represented) as the sum of four perfect squares?

That is, which  $n \in \mathbb{Z}$  can be written as

$$n = x^2 + y^2 + z^2 + w^2$$

with  $x, y, z, w \in \mathbb{Z}$ ?

# Sum of four squares

Which integers can be written (or represented) as the sum of four perfect squares?

That is, which  $n \in \mathbb{Z}$  can be written as

$$n = x^2 + y^2 + z^2 + w^2$$

with  $x, y, z, w \in \mathbb{Z}$ ?

#### Theorem (Lagrange, 1770)

Every nonnegative integer can be written as the sum of four perfect squares.

# Sum of four squares

Which integers can be written (or represented) as the sum of four perfect squares?

That is, which  $n \in \mathbb{Z}$  can be written as

$$n = x^2 + y^2 + z^2 + w^2$$

with  $x, y, z, w \in \mathbb{Z}$ ?

#### Theorem (Lagrange, 1770)

Every nonnegative integer can be written as the sum of four perfect squares.

How many ways can an integer be written as the sum of four squares?



# How many ways can an integer be written as the sum of four squares?

#### Definition (Representation number for the sum of four squares)

$$r_4(n) = |\{(x, y, z, w)^{\top} \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n\}|$$
  
=  $|\{\mathbf{m} \in \mathbb{Z}^4 : f_4(\mathbf{m}) = n\}|,$ 

where 
$$f_4(\mathbf{m}) = m_1^2 + m_2^2 + m_3^2 + m_4^2$$
.

# How many ways can an integer be written as the sum of four squares?

#### Definition (Representation number for the sum of four squares)

$$r_4(n) = |\{(x, y, z, w)^{\top} \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n\}|$$
  
=  $|\{\mathbf{m} \in \mathbb{Z}^4 : f_4(\mathbf{m}) = n\}|,$ 

where  $f_4(\mathbf{m}) = m_1^2 + m_2^2 + m_3^2 + m_4^2$ .

#### Theorem (Jacobi, 1834)

If n is a positive integer, then

$$r_4(n) = 8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d.$$

# How many ways can an integer be written as the sum of four squares?

#### Definition (Representation number for the sum of four squares)

$$r_4(n) = |\{(x, y, z, w)^{\top} \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n\}|$$
  
=  $|\{\mathbf{m} \in \mathbb{Z}^4 : f_4(\mathbf{m}) = n\}|,$ 

where  $f_4(\mathbf{m}) = m_1^2 + m_2^2 + m_3^2 + m_4^2$ .

#### Theorem (Jacobi, 1834)

If n is a positive integer, then

$$r_4(n) = 8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d.$$

What about more general positive definite quadratic forms?



# Real quadratic forms

F is a real quadratic form in s variables  $\iff$  For all  $\mathbf{m} \in \mathbb{R}^s$ ,

$$F(\mathbf{m}) = \frac{1}{2}\mathbf{m}^{\top}A\mathbf{m},$$

where A is a real symmetric  $s \times s$  matrix and is the Hessian matrix of F.

#### Example (Example of a quadratic form in 2 variables)

$$F(\mathbf{m}) = m_1^2 + m_1 m_2 + m_2^2$$
$$= \frac{1}{2} \mathbf{m}^\top \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \mathbf{m}$$

# Quadratic form definitions

#### Definition (Integral quadratic form)

A quadratic form F is **integral** if  $F(\mathbf{m}) \in \mathbb{Z}$  for all  $\mathbf{m} \in \mathbb{Z}^s$ .

#### Definition (Positive definite quadratic form)

A quadratic form F is **positive definite** if  $F(\mathbf{m}) > 0$  for all  $\mathbf{m} \in \mathbb{R}^s \setminus \{\mathbf{0}\}.$ 

#### Examples (Examples of integral positive definite quadratic forms)

- $f_4(\mathbf{m}) = m_1^2 + m_2^2 + m_3^2 + m_4^2$
- $x^2 + xy + y^2$



# (Unweighted) representation number

#### Definition ((Unweighted) representation number)

$$R_F(n) = |\{\mathbf{m} \in \mathbb{Z}^s : F(\mathbf{m}) = n\}|$$

#### Example

If 
$$F(\mathbf{m}) = f_4(\mathbf{m})$$
, then  $R_F(n) = r_4(n)$ .

# (Unweighted) representation number

#### Definition ((Unweighted) representation number)

$$R_F(n) = |\{\mathbf{m} \in \mathbb{Z}^s : F(\mathbf{m}) = n\}|$$

#### Example

If 
$$F(\mathbf{m}) = f_4(\mathbf{m})$$
, then  $R_F(n) = r_4(n)$ .

$$R_F(n) = \sum_{\mathbf{m} \in \mathbb{Z}^s} \mathbf{1}_{\{F(\mathbf{m}) = n\}},$$

where  $\mathbf{1}_{\{F(\mathbf{m})=n\}}$  is the indicator function

$$\mathbf{1}_{\{F(\mathbf{m})=n\}} = egin{cases} 1 & \text{if } F(\mathbf{m}) = n, \\ 0 & \text{otherwise.} \end{cases}$$



# Singular series $\mathfrak{S}_F(n)$

The singular series  $\mathfrak{S}_F(n)$  contains information about  $F(\mathbf{m}) \equiv n \pmod{q}$  for all positive integers q.

$$\mathfrak{S}_F(n) = 0 \iff$$
 there exists a positive integer  $q$  such that  $F(\mathbf{m}) \equiv n \pmod{q}$  has no solutions

#### Theorem

Suppose that n is a positive integer.

Suppose that F is a positive definite integral quadratic form in  $s \ge 4$  variables.

Let  $A \in M_s(\mathbb{Z})$  be the Hessian matrix of F.

Then the number of integral solutions to  $F(\mathbf{m}) = n$  is

$$R_{F}(n) = \mathfrak{S}_{F}(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{\frac{s}{2}-1} + O_{F,\varepsilon} \left( n^{\frac{s-1}{4}+\varepsilon} \right)$$

for any  $\varepsilon > 0$ .

- Kloosterman proved this (with a worse error term) in 1926 for diagonal quadratic forms  $(F(\mathbf{m}) = a_1 m_1^2 + \cdots + a_s m_s^2)$ , using what is now called the Kloosterman circle method.
- Obtained as a corollary of my main result.



- Proofs in
  - §11.4 of Topics in Classical Automorphic Forms by Iwaniec
  - §20.4 of Analytic Number Theory by Iwaniec and Kowalski

- Proofs in
  - §11.4 of Topics in Classical Automorphic Forms by Iwaniec
  - §20.4 of Analytic Number Theory by Iwaniec and Kowalski
- Proofs use the Kloosterman circle method

- Proofs in
  - §11.4 of Topics in Classical Automorphic Forms by Iwaniec
  - §20.4 of Analytic Number Theory by Iwaniec and Kowalski
- Proofs use the Kloosterman circle method
- Proofs assume equal weight to be given to all integer solutions to  $F(\mathbf{m}) = n$

# Bump functions & weighted representation numbers

### Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on  $\mathbb{R}^s$  is denoted by  $C_c^{\infty}(\mathbb{R}^s)$ . A function  $\psi \in C_c^{\infty}(\mathbb{R}^s)$  is called a **bump function**.

# Bump functions & weighted representation numbers

#### Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on  $\mathbb{R}^s$  is denoted by  $C_c^{\infty}(\mathbb{R}^s)$ . A function  $\psi \in C_c^{\infty}(\mathbb{R}^s)$  is called a **bump function**.

Let  $\psi \in C_c^{\infty}(\mathbb{R}^s)$ . For X > 0, define

$$\psi_X(\mathbf{m}) = \psi\left(\frac{1}{X}\mathbf{m}\right).$$

# Bump functions & weighted representation numbers

#### Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on  $\mathbb{R}^s$  is denoted by  $C_c^{\infty}(\mathbb{R}^s)$ . A function  $\psi \in C_c^{\infty}(\mathbb{R}^s)$  is called a **bump function**.

Let  $\psi \in C_c^{\infty}(\mathbb{R}^s)$ . For X > 0. define

$$\psi_X(\mathbf{m}) = \psi\left(\frac{1}{X}\mathbf{m}\right).$$

#### Definition (Weighted representation number)

$$R_{F,\psi,X}(n) = \sum_{\mathbf{m} \in \mathbb{Z}^s} \mathbf{1}_{\{F(\mathbf{m})=n\}} \psi_X(\mathbf{m})$$



#### Theorem (Heath-Brown, 1996)

Suppose that n is an integer.

Suppose that F is a nonsingular integral quadratic form in  $s \ge 4$  variables.

Suppose that  $\psi \in C_c^{\infty}(\mathbb{R}^s)$  is a bump function.

Then for  $\varepsilon > 0$ , the weighted representation number  $R_{F,\psi,n^{1/2}}(n)$  is

$$R_{F,\psi,n^{1/2}}(n) = \mathfrak{S}_F(n)\sigma_{F,\psi,\infty}(n,n^{1/2})n^{\frac{s}{2}-1} + O_{F,\psi,s,\varepsilon}\left(n^{\frac{s-1}{4}+\varepsilon}\right),$$

where

$$\sigma_{F,\psi,\infty}(n,X) = \lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{\left|F(\mathbf{m}) - \frac{n}{X^2}\right| < \varepsilon} \psi(\mathbf{m}) \ d\mathbf{m}.$$

Proof uses the delta method with a Kloosterman refinement.



#### Theorem (J., 2022)

Suppose that n is a positive integer and that F is a positive definite integral quadratic form in  $s \geq 4$  variables. Let  $A \in M_s(\mathbb{Z})$  be the Hessian matrix of F. Let  $\lambda_s$  be largest eigenvalue of A. Let L be the smallest positive integer such that  $LA^{-1} \in M_s(\mathbb{Z})$ . Suppose that  $\psi \in C_c^{\infty}(\mathbb{R}^s)$  is a bump function. Then for  $X \geq 1/\lambda_s$  and  $\varepsilon > 0$ , the weighted representation number  $R_{F,\psi,X}(n)$  is

$$\begin{split} R_{F,\psi,X}(n) &= \mathfrak{S}_F(n) \sigma_{F,\psi,\infty}(n,X) X^{s-2} \\ &+ O_{\psi,s,\varepsilon} \Bigg( \left( n^{\frac{s}{2} - 1} X^{\frac{3-s}{2} + \varepsilon} \lambda_s^{\frac{3-s}{2} + \varepsilon} (\det(A))^{-1/2} + X^{\frac{s-1}{2} + \varepsilon} \lambda_s^{\frac{s+1}{2} + \varepsilon} \right) \\ &\times L^{s/2} \tau(n) \prod_{p|2 \det(A)} (1 - p^{-1/2})^{-1} \Bigg). \end{split}$$

#### Corollary (J., 2022)

Assume hypotheses of previous theorem and that n is sufficiently large. Set X to be

$$X = n^{1/2} \lambda_s^{(1-s)/(s-2)} (\det(A))^{1/(4-2s)}.$$

Then the weighted representation number  $R_{F,\psi,X}(n)$  is

$$R_{F,\psi,X}(n) = \mathfrak{S}_F(n)\sigma_{F,\psi,\infty}(n,X)X^{s-2}$$

$$+ O_{\psi,s,\varepsilon}\left(n^{\frac{s-1}{4}+\varepsilon}\lambda_s^{\frac{s-3-2\varepsilon}{2s-4}}(\det(A))^{\frac{1-s-2\varepsilon}{4s-8}}\right)$$

$$\times L^{s/2}\prod_{p\mid 2\det(A)}(1-p^{-1/2})^{-1}$$

for any  $\varepsilon > 0$ .



# An asymptotic for a representation number

#### Corollary

Suppose that n is a positive integer.

Suppose that F is a positive definite integral quadratic form in  $s \ge 4$  variables.

Let  $A \in M_s(\mathbb{Z})$  be the Hessian matrix of F.

Then the number of integral solutions to  $F(\mathbf{m}) = n$  is

$$R_{F}(n) = \mathfrak{S}_{F}(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{s/2-1} + O_{F,\varepsilon} \left( n^{(s-1)/4+\varepsilon} \right)$$

for any  $\varepsilon > 0$ .

Proof sketch: Choose  $X = n^{1/2}$  and  $\psi$  to be such that  $\psi(\mathbf{m}) = 1$  whenever  $\mathbf{m} \in \mathbb{R}^s$  satisfies  $F(\mathbf{m}) = 1$ .



• Write  $R_{F,\psi,X}(n)$  as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{\mathbf{m} \in \mathbb{Z}^s} \mathrm{e}(x(F(\mathbf{m}) - n)) \, \psi_X(\mathbf{m}) \, dx,$$

• Write  $R_{F,\psi,X}(n)$  as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{\mathbf{m} \in \mathbb{Z}^s} e(x(F(\mathbf{m}) - n)) \psi_X(\mathbf{m}) dx,$$

where  $e(z) = e^{2\pi i z}$ .

Break up the integral using a Farey dissection.

• Write  $R_{F,\psi,X}(n)$  as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{\mathbf{m} \in \mathbb{Z}^s} \mathrm{e}(x(F(\mathbf{m}) - n)) \, \psi_X(\mathbf{m}) \, dx,$$

- Break up the integral using a Farey dissection.
- Use Poisson summation and split integrals into arithmetic parts and archimedean parts.

• Write  $R_{F,\psi,X}(n)$  as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{\mathbf{m} \in \mathbb{Z}^s} e(x(F(\mathbf{m}) - n)) \, \psi_X(\mathbf{m}) \, dx,$$

- 2 Break up the integral using a Farey dissection.
- Use Poisson summation and split integrals into arithmetic parts and archimedean parts.
- Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)

• Write  $R_{F,\psi,X}(n)$  as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{\mathbf{m} \in \mathbb{Z}^s} e(x(F(\mathbf{m}) - n)) \psi_X(\mathbf{m}) dx,$$

- 2 Break up the integral using a Farey dissection.
- Use Poisson summation and split integrals into arithmetic parts and archimedean parts.
- Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)
- Use bounds on oscillatory integrals to bound the archimedean parts. (The principle of nonstationary phase is used.)



• Write  $R_{F,\psi,X}(n)$  as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{\mathbf{m} \in \mathbb{Z}^s} e(x(F(\mathbf{m}) - n)) \psi_X(\mathbf{m}) dx,$$

- Break up the integral using a Farey dissection.
- Use Poisson summation and split integrals into arithmetic parts and archimedean parts.
- Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)
- Use bounds on oscillatory integrals to bound the archimedean parts. (The principle of nonstationary phase is used.)
- Out estimates together and compute the main term.



#### Definition

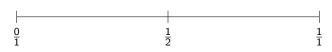
For  $Q\geq 1$ , the **Farey sequence**  $\mathfrak{F}_Q$  of order Q is the increasing sequence of all reduced fractions  $\frac{a}{q}$  with  $1\leq q\leq Q$  and  $\gcd(a,q)=1$ .



#### Definition

For  $Q\geq 1$ , the **Farey sequence**  $\mathfrak{F}_Q$  of order Q is the increasing sequence of all reduced fractions  $\frac{a}{q}$  with  $1\leq q\leq Q$  and  $\gcd(a,q)=1$ .

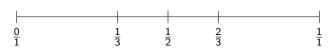
Q = 2



#### Definition

For  $Q\geq 1$ , the **Farey sequence**  $\mathfrak{F}_Q$  of order Q is the increasing sequence of all reduced fractions  $\frac{a}{q}$  with  $1\leq q\leq Q$  and  $\gcd(a,q)=1$ .

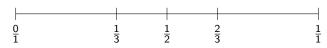
Q = 3



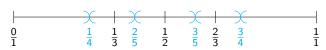
#### Definition

For  $Q\geq 1$ , the **Farey sequence**  $\mathfrak{F}_Q$  of order Q is the increasing sequence of all reduced fractions  $\frac{a}{q}$  with  $1\leq q\leq Q$  and  $\gcd(a,q)=1$ .





Example of Farey dissection when Q = 3:



#### Lemma for Kloosterman circle method

#### Lemma

Let  $f: \mathbb{R} \to \mathbb{C}$  be a periodic function of period 1 and with real Fourier coefficients (so that  $\overline{f(x)} = f(-x)$  for all  $x \in \mathbb{R}$ ). Then

$$\int_0^1 f(x) \ dx = 2 \operatorname{Re} \left( \sum_{\substack{1 \le q \le Q \\ 1 \le q \le Q}} \int_0^{\frac{1}{qQ}} \sum_{\substack{Q < d \le q + Q \\ q dx < 1 \\ \gcd(d,q) = 1}} f\left(x - \frac{d^*}{q}\right) \ dx \right),$$

where  $d^*$  is the multiplicative inverse of d modulo q.

Use this for

$$f(x) = \sum_{\mathbf{m} \in \mathbb{Z}^s} e(x(F(\mathbf{m}) - n)) \psi_X(\mathbf{m}).$$



# Arithmetic and archimedean parts

$$R_{F,\psi,X}(n) = 2 \operatorname{Re} \left( \sum_{1 \leq q \leq Q} \frac{1}{q^s} \int_0^{\frac{1}{qQ}} e(-nx) \sum_{\mathbf{r} \in \mathbb{Z}^s} \mathcal{I}_{F,\psi}(x,X,\mathbf{r},q) T_{\mathbf{r}}(q,n;x) \ dx \right),$$

where the arithmetic part is

$$\mathcal{T}_{\mathbf{r}}(q, n; x) = \sum_{\substack{Q < d \leq q + Q \\ qdx < 1 \\ \gcd(d, q) = 1}} e\left(n\frac{d^*}{q}\right) G_{\mathbf{r}}(-d^*, q),$$

the Gauss sum  $G_{\mathbf{r}}(d,q)$  is

$$G_{\mathbf{r}}(d,q) = \sum_{\mathbf{h} \in (\mathbb{Z}/q\mathbb{Z})^s} e^{\left(\frac{1}{q}(dF(\mathbf{h}) + \mathbf{h} \cdot \mathbf{r})\right)},$$

and the archmedean part is

$$\mathcal{I}_{F,\psi}(x,X,\mathbf{r},q) = \int_{\mathbb{R}^s} \mathrm{e}igg(xF(\mathbf{m}) - rac{1}{q}\mathbf{m}\cdot\mathbf{r}igg)\psi_X(\mathbf{m})\ d\mathbf{m}.$$



# A potential application: A strong asymptotic local-global principle for certain Kleinian sphere packings

Examples of Kleinian sphere packings that have or might have a strong asymptotic local-global principle:

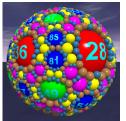


Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi

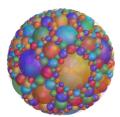


Figure: An integral Kleinian (more specifically, an orthoplicial) sphere packing. Image by Kei Nakamura

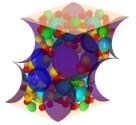


Figure: A fundamental domain of an integral Kleinian sphere packing. Image by Arseniy (Senia) Sheydvasser.



Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere: bend = 1/radius



Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

 $\label{eq:Label on sphere:} \mbox{bend} = 1/\mbox{radius}$ 

All of the bends of this Soddy sphere packing are integers.



Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere: bend = 1/radius

All of the bends of this Soddy sphere packing are integers.

Which integers appear as bends?



Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere: bend = 1/radius

All of the bends of this Soddy sphere packing are integers.

Which integers appear as bends?

Are there any congruence or local obstructions?



#### Admissible integers

#### Definition (Admissible integers)

Let  $\mathcal P$  be an integral Kleinian sphere packing in  $\mathbb R^d \cup \{\infty\}$ . An integer m is admissible (or locally represented) if for every  $q \geq 1$ 

 $m \equiv \text{bend of some } (d-1)\text{-sphere in } \mathcal{P} \pmod{q}$ .

Equivalently, m is admissible if m has no local obstructions.

## Admissible integers

#### Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing  ${\mathcal P}$  if and only if

$$m \equiv 0 \text{ or } \varepsilon(\mathcal{P}) \pmod{3}$$
,

where  $\varepsilon(\mathcal{P}) \in \{\pm 1\}$  depends only on the packing.

#### Example



m is admissible  $\iff$   $m \equiv 0$  or 1 (mod 3).

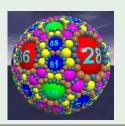
### A strong asymptotic local-global theorem

#### Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing  $\mathcal{P}$  satisfy a strong asymptotic local-global principle.

That is, there is an  $N_0 = N_0(\mathcal{P})$  so that, if  $m > N_0$  and m is admissible, then m is the bend of a sphere in the packing.

#### Example



If  $m \equiv 0$  or 1 (mod 3) and m is sufficiently large, then m is the bend of a sphere in the packing.

# Examples of integral Kleinian sphere packings

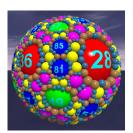


Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.



Figure: An integral Kleinian (more specifically, an orthoplicial) sphere packing. Image by Kei Nakamura.

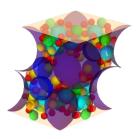


Figure: A fundamental domain of an integral Kleinian sphere packing. Image by Arseniy (Senia) Sheydvasser.

#### Strong asymptotic local-global principles

**Goal:** Prove strong asymptotic local-global principles for certain integral Kleinian sphere packings, that is, prove:

If m is admissible and sufficiently large, then m is the bend of an (d-1)-sphere in the packing.

#### Definition (Admissible integers)

Let  $\mathcal P$  be an integral Kleinian sphere packing in  $\mathbb R^d \cup \{\infty\}$ . An integer m is admissible (or locally represented) if for every  $q \geq 1$ 

 $m \equiv \text{bend of some } (d-1)\text{-sphere in } \mathcal{P} \pmod{q}$ .

# Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let  $\mathcal P$  be a primitive integral Kleinian (d-1)-sphere packing in  $\mathbb R^d \cup \{\infty\}$  with an orientation-preserving automorphism group  $\Gamma$  of Möbius transformations.

Under some conditions, every sufficiently large admissible integer is a bend of a (d-1)-sphere in  $\mathcal{P}$ . That is, there exists an  $N_0=N_0(\mathcal{P})$  such that if m is admissible and  $m>N_0$ , then m is the bend of a (d-1)-sphere in  $\mathcal{P}$ .

• Using Möbius transformations on  $\mathbb{R}^d \cup \{\infty\}$  and inversive coordinates of (d-1)-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables.

- Using Möbius transformations on  $\mathbb{R}^d \cup \{\infty\}$  and inversive coordinates of (d-1)-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables.
- Potentially, my version of the Kloosterman circle method could be then used to prove a result towards a strong asymptotic local-global conjecture for certain Kleinian sphere packings.

- Using Möbius transformations on  $\mathbb{R}^d \cup \{\infty\}$  and inversive coordinates of (d-1)-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables.
- Potentially, my version of the Kloosterman circle method could be then used to prove a result towards a strong asymptotic local-global conjecture for certain Kleinian sphere packings.
- The potential result would be the first to apply to multiple conformally inequivalent integral Kleinian sphere packings.

Thank you for listening!

#### The singular series and the real factor

Singular series:

$$\mathfrak{S}_{F}(n) = \sum_{q=1}^{\infty} \frac{1}{q^{s}} \sum_{d \in (\mathbb{Z}/q\mathbb{Z})^{\times}} \sum_{\mathbf{h} \in (\mathbb{Z}/q\mathbb{Z})^{s}} e^{\left(\frac{d}{q} \left(F(\mathbf{h}) - n\right)\right)}$$

Real factor:

$$\sigma_{F,\psi,\infty}(n,X) = \lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{\left|F(\mathbf{m}) - \frac{n}{X^2}\right| < \varepsilon} \psi(\mathbf{m}) \ d\mathbf{m}.$$

#### Kloosterman sums and Salié sums

$$\kappa_{s,q}(a,b) = \sum_{d \pmod{q}} \left(\frac{d}{q}\right)^s e\left(\frac{ad + bd^*}{q}\right) \tag{1}$$

is either a Kloosterman sum (if s is even) or a Salié sum (if s is odd).

#### Lemma (Weil bound for Kloosterman sums)

If s is even, a and b are integers, and q is a positive integer, then

$$|\kappa_{s,q}(a,b)| \leq \tau(q)(\gcd(a,b,q))^{1/2}q^{1/2},$$

where the divisor function  $\tau(q)$  is the number of positive divisors of q.



#### A principle of nonstationary phase

#### Theorem (Principle of nonstationary phase in 1 variable, J., 2022)

Let  $\psi \in C_c^{\infty}(\mathbb{R})$  and let  $M \geq 0$ . Let  $f \in C^{\infty}(\mathbb{R})$  be such that  $|f'(x)| \geq B > 0$  and  $|f^{(j)}(x)| \leq |f'(x)|$  for all  $x \in \text{supp}(\psi)$  and for each integer j satisfying  $2 \leq j \leq \lceil M \rceil$ . Then

$$\int_{\mathbb{R}} e(f(x)) \psi(x) \ dx \ll_{\psi, M} B^{-M}.$$

#### Definition (Kleinian sphere packing)

An (d-1)-sphere packing  $\mathcal{P}$  is **Kleinian** if its limit set is that of a geometrically finite group  $\Gamma < \text{Isom}(\mathbb{H}^{d+1})$ .

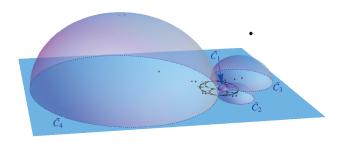


Figure: Apollonian circle packing as the limit set of  $\Gamma$ . Image by Alex Kontorovich.



#### Definition (Kleinian sphere packing)

An (n-1)-sphere packing  $\mathcal{P}$  is **Kleinian** if its limit set is that of a geometrically finite group  $\Gamma < \text{Isom}(\mathbb{H}^{n+1})$ .

• Action of Isom( $\mathbb{H}^{d+1}$ ) extends continuously to  $\widehat{\mathbb{R}^d} = \mathbb{R}^d \cup \{\infty\}$ , the boundary of  $\mathbb{H}^{d+1}$ .

#### Definition (Kleinian sphere packing)

An (n-1)-sphere packing  $\mathcal{P}$  is **Kleinian** if its limit set is that of a geometrically finite group  $\Gamma < \text{Isom}(\mathbb{H}^{n+1})$ .

- Action of Isom( $\mathbb{H}^{d+1}$ ) extends continuously to  $\widehat{\mathbb{R}^d} = \mathbb{R}^d \cup \{\infty\}$ , the boundary of  $\mathbb{H}^{d+1}$ .
- $\Gamma$  stabilizes  $\mathcal{P}$  (i.e.,  $\Gamma$  maps  $\mathcal{P}$  to itself).

#### Definition (Kleinian sphere packing)

An (n-1)-sphere packing  $\mathcal{P}$  is **Kleinian** if its limit set is that of a geometrically finite group  $\Gamma < \text{Isom}(\mathbb{H}^{n+1})$ .

- Action of Isom( $\mathbb{H}^{d+1}$ ) extends continuously to  $\widehat{\mathbb{R}^d} = \mathbb{R}^d \cup \{\infty\}$ , the boundary of  $\mathbb{H}^{d+1}$ .
- $\Gamma$  stabilizes  $\mathcal P$  (i.e.,  $\Gamma$  maps  $\mathcal P$  to itself).
- Γ is a thin group.

Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let  $\mathcal P$  be a primitive integral Kleinian (d-1)-sphere packing in  $\mathbb R^d \cup \{\infty\}$  with an orientation-preserving automorphism group  $\Gamma$  of Möbius transformations.

Then every sufficiently large admissible integer is a bend of a (d-1)-sphere in  $\mathcal{P}$ . That is, there exists an  $N_0=N_0(\mathcal{P})$  such that if m is admissible and  $m>N_0$ , then m is the bend of a (d-1)-sphere in  $\mathcal{P}$ .

Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let  $\mathcal{P}$  be a primitive integral Kleinian (d-1)-sphere packing in  $\mathbb{R}^d \cup \{\infty\}$  with an orientation-preserving automorphism group  $\Gamma$  of Möbius transformations.

**1** Suppose that there exists a (d-1)-sphere  $S_0 ∈ \mathcal{P}$  such that the stabilizer of  $S_0$  in  $\Gamma$  contains (up to conjugacy) a congruence subgroup of  $PSL_2(\mathcal{O}_K)$ , where K is an imaginary quadratic field and  $\mathcal{O}_K$  is the ring of integers of K. This condition implies that  $d \ge 3$ .

Then every sufficiently large admissible integer is a bend of a (d-1)-sphere in  $\mathcal{P}$ . That is, there exists an  $N_0=N_0(\mathcal{P})$  such that if m is admissible and  $m>N_0$ , then m is the bend of a (d-1)-sphere in  $\mathcal{P}$ .

# Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let  $\mathcal P$  be a primitive integral Kleinian (d-1)-sphere packing in  $\mathbb R^d \cup \{\infty\}$  with an orientation-preserving automorphism group  $\Gamma$  of Möbius transformations.

- **1** Suppose that there exists a (d-1)-sphere  $S_0 ∈ \mathcal{P}$  such that the stabilizer of  $S_0$  in  $\Gamma$  contains (up to conjugacy) a congruence subgroup of  $PSL_2(\mathcal{O}_K)$ , where K is an imaginary quadratic field and  $\mathcal{O}_K$  is the ring of integers of K. This condition implies that  $d \ge 3$ .
- **2** Suppose that there is a (d-1)-sphere  $S_1 \in \mathcal{P}$  that is tangent to  $S_0$ .

Then every sufficiently large admissible integer is a bend of a (d-1)-sphere in  $\mathcal{P}$ . That is, there exists an  $N_0=N_0(\mathcal{P})$  such that if m is admissible and  $m>N_0$ , then m is the bend of a (d-1)-sphere in  $\mathcal{P}$ .