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Sum of four squares

Which integers can be written (or represented) as the sum of four
perfect squares?
That is, which n ∈ Z can be written as

n = x2 + y2 + z2 + w2

with x , y , z ,w ∈ Z?

Theorem (Lagrange, 1770)

Every nonnegative integer can be written as the sum of four
perfect squares.

How many ways can an integer be written as the sum of four
squares?
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How many ways can an integer be written as the sum of
four squares?

Definition (Representation number for the sum of four squares)

r4(n) = |{(x , y , z ,w)⊤ ∈ Z4 : x2 + y2 + z2 + w2 = n}|
= |{m ∈ Z4 : f4(m) = n}|,

where f4(m) = m2
1 +m2

2 +m2
3 +m2

4.

Theorem (Jacobi, 1834)

If n is a positive integer, then

r4(n) = 8
∑
d |n
4∤d

d .

What about more general positive definite quadratic forms?
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Real quadratic forms

F is a real quadratic form in s variables ⇐⇒
For all m ∈ Rs ,

F (m) =
1

2
m⊤Am,

where A is a real symmetric s × s matrix and is the Hessian matrix
of F .

Example (Example of a quadratic form in 2 variables)

F (m) = m2
1 +m1m2 +m2

2

=
1

2
m⊤

(
2 1
1 2

)
m
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Quadratic form definitions

Definition (Integral quadratic form)

A quadratic form F is integral if F (m) ∈ Z for all m ∈ Zs .

Definition (Positive definite quadratic form)

A quadratic form F is positive definite if F (m) > 0 for all
m ∈ Rs \ {0}.

Examples (Examples of integral positive definite quadratic forms)

f4(m) = m2
1 +m2

2 +m2
3 +m2

4

x2 + xy + y2
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(Unweighted) representation number

Definition ((Unweighted) representation number)

RF (n) = |{m ∈ Zs : F (m) = n}|

Example

If F (m) = f4(m), then RF (n) = r4(n).

RF (n) =
∑
m∈Zs

1{F (m)=n},

where 1{F (m)=n} is the indicator function

1{F (m)=n} =

{
1 if F (m) = n,

0 otherwise.
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Singular series SF (n)

The singular series SF (n) contains information about
F (m) ≡ n (mod q) for all positive integers q.

SF (n) = 0 ⇐⇒
there exists a positive integer q such that F (m) ≡ n (mod q) has
no solutions
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An asymptotic for (unweighted) representation numbers

Theorem

Suppose that n is a positive integer.
Suppose that F is a positive definite integral quadratic form in
s ≥ 4 variables.
Let A ∈ Ms(Z) be the Hessian matrix of F .
Then the number of integral solutions to F (m) = n is

RF (n) = SF (n)
(2π)s/2

Γ(s/2)
√
det(A)

n
s
2
−1 + OF ,ε

(
n

s−1
4

+ε
)

for any ε > 0.

Kloosterman proved this (with a worse error term) in 1926 for
diagonal quadratic forms (F (m) = a1m

2
1 + · · ·+ asm

2
s ), using

what is now called the Kloosterman circle method.

Obtained as a corollary of my main result.
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An asymptotic for (unweighted) representation numbers

Proofs in

§11.4 of Topics in Classical Automorphic Forms by Iwaniec
§20.4 of Analytic Number Theory by Iwaniec and Kowalski

Proofs use the Kloosterman circle method

Proofs assume equal weight to be given to all integer
solutions to F (m) = n
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Bump functions & weighted representation numbers

Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly
supported functions on Rs is denoted by C∞

c (Rs). A function
ψ ∈ C∞

c (Rs) is called a bump function.

Let ψ ∈ C∞
c (Rs).

For X > 0, define

ψX (m) = ψ

(
1

X
m

)
.

Definition (Weighted representation number)

RF ,ψ,X (n) =
∑
m∈Zs

1{F (m)=n}ψX (m)
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An asymptotic for weighted representation numbers

Theorem (Heath-Brown, 1996)

Suppose that n is an integer.
Suppose that F is a nonsingular integral quadratic form in s ≥ 4
variables.
Suppose that ψ ∈ C∞

c (Rs) is a bump function.
Then for ε > 0, the weighted representation number RF ,ψ,n1/2(n) is

RF ,ψ,n1/2(n) = SF (n)σF ,ψ,∞(n, n1/2)n
s
2
−1 + OF ,ψ,s,ε

(
n

s−1
4

+ε
)
,

where

σF ,ψ,∞(n,X ) = lim
ε→0+

1

2ε

∫
∣∣∣F (m)− n

X2

∣∣∣<ε ψ(m) dm.

Proof uses the delta method with a Kloosterman refinement.
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An asymptotic for weighted representation numbers

Theorem (J., 2022)

Suppose that n is a positive integer and that F is a positive
definite integral quadratic form in s ≥ 4 variables. Let A ∈ Ms(Z)
be the Hessian matrix of F . Let λs be largest eigenvalue of A. Let
L be the smallest positive integer such that LA−1 ∈ Ms(Z).
Suppose that ψ ∈ C∞

c (Rs) is a bump function. Then for X ≥ 1/λs
and ε > 0, the weighted representation number RF ,ψ,X (n) is

RF ,ψ,X (n)

= SF (n)σF ,ψ,∞(n,X )X s−2

+ Oψ,s,ε

((
n

s
2
−1X

3−s
2

+ελ
3−s
2

+ε
s (det(A))−1/2 + X

s−1
2

+ελ
s+1
2

+ε
s

)

× Ls/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1

)
.

Edna Jones Kloosterman method and weighted representation numbers



An asymptotic for weighted representation numbers

Corollary (J., 2022)

Assume hypotheses of previous theorem and that n is sufficiently
large. Set X to be

X = n1/2λ
(1−s)/(s−2)
s (det(A))1/(4−2s).

Then the weighted representation number RF ,ψ,X (n) is

RF ,ψ,X (n) = SF (n)σF ,ψ,∞(n,X )X s−2

+ Oψ,s,ε

(
n

s−1
4

+ελ
s−3−2ε
2s−4

s (det(A))
1−s−2ε
4s−8

× Ls/2
∏

p|2 det(A)

(1− p−1/2)−1

)

for any ε > 0.
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An asymptotic for a representation number

Corollary

Suppose that n is a positive integer.
Suppose that F is a positive definite integral quadratic form in
s ≥ 4 variables.
Let A ∈ Ms(Z) be the Hessian matrix of F .
Then the number of integral solutions to F (m) = n is

RF (n) = SF (n)
(2π)s/2

Γ(s/2)
√
det(A)

ns/2−1 + OF ,ε

(
n(s−1)/4+ε

)
for any ε > 0.

Proof sketch: Choose X = n1/2 and ψ to be such that ψ(m) = 1
whenever m ∈ Rs satisfies F (m) = 1.
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Proof sketch of main result

1 Write RF ,ψ,X (n) as

RF ,ψ,X (n) =

∫ 1

0

∑
m∈Zs

e(x(F (m)− n))ψX (m) dx ,

where e(z) = e2πiz .

2 Break up the integral using a Farey dissection.

3 Use Poisson summation and split integrals into arithmetic
parts and archimedean parts.

4 Use Gauss sums, Kloosterman sums, and Salié sums to bound
the arithmetic parts. (The Weil bound for Kloosterman sums
is used.)

5 Use bounds on oscillatory integrals to bound the archimedean
parts. (The principle of nonstationary phase is used.)

6 Put estimates together and compute the main term.
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Farey sequence FQ of order Q

Definition

For Q ≥ 1, the Farey sequence FQ of order Q is the increasing
sequence of all reduced fractions a

q with 1 ≤ q ≤ Q and
gcd(a, q) = 1.

Q = 1

0
1

1
1

Example of Farey dissection when Q = 3:

0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
5

3
4
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Lemma for Kloosterman circle method

Lemma

Let f : R → C be a periodic function of period 1 and with real
Fourier coefficients (so that f (x) = f (−x) for all x ∈ R). Then

∫ 1

0
f (x) dx = 2Re


∑

1≤q≤Q

∫ 1
qQ

0

∑
Q<d≤q+Q

qdx<1
gcd(d ,q)=1

f

(
x − d∗

q

)
dx

 ,

where d∗ is the multiplicative inverse of d modulo q.

Use this for

f (x) =
∑
m∈Zs

e(x(F (m)− n))ψX (m).
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Arithmetic and archimedean parts

RF ,ψ,X (n) = 2Re

 ∑
1≤q≤Q

1

qs

∫ 1
qQ

0

e(−nx)
∑
r∈Zs

IF ,ψ(x ,X , r, q)Tr(q, n; x) dx

 ,

where the arithmetic part is

Tr(q, n; x) =
∑

Q<d≤q+Q
qdx<1

gcd(d,q)=1

e

(
n
d∗

q

)
Gr(−d∗, q),

the Gauss sum Gr(d , q) is

Gr(d , q) =
∑

h∈(Z/qZ)s
e

(
1

q
(dF (h) + h · r)

)
,

and the archmedean part is

IF ,ψ(x ,X , r, q) =
∫
Rs

e

(
xF (m)− 1

q
m · r

)
ψX (m) dm.
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A potential application: A strong asymptotic local-global
principle for certain Kleinian sphere packings

Examples of Kleinian sphere packings that have or might have a
strong asymptotic local-global principle:

Figure: An integral
Soddy sphere
packing. Image by
Nicolas Hannachi.

Figure: An integral
Kleinian (more
specifically, an
orthoplicial) sphere
packing. Image by
Kei Nakamura.

Figure: A
fundamental domain
of an integral
Kleinian sphere
packing. Image by
Arseniy (Senia)
Sheydvasser.
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Soddy sphere packings

Figure: An integral Soddy
sphere packing. Image by
Nicolas Hannachi.

Label on sphere:
bend = 1/radius

All of the bends of this Soddy
sphere packing are integers.

Which integers appear as
bends?

Are there any congruence or
local obstructions?
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Soddy sphere packings
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Admissible integers

Definition (Admissible integers)

Let P be an integral Kleinian sphere packing in Rd ∪ {∞}.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some (d − 1)-sphere in P (mod q) .

Equivalently, m is admissible if m has no local obstructions.
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Admissible integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing P if
and only if

m ≡ 0 or ε(P) (mod 3) ,

where ε(P) ∈ {±1} depends only on the packing.

Example

m is admissible ⇐⇒
m ≡ 0 or 1 (mod 3).
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A strong asymptotic local-global theorem

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing P
satisfy a strong asymptotic local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a sphere in the packing.

Example

If m ≡ 0 or 1 (mod 3) and m is
sufficiently large, then m is the bend
of a sphere in the packing.
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Examples of integral Kleinian sphere packings
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Strong asymptotic local-global principles

Goal: Prove strong asymptotic local-global principles for certain
integral Kleinian sphere packings, that is, prove:
If m is admissible and sufficiently large, then m is the bend of
an (d − 1)-sphere in the packing.

Definition (Admissible integers)

Let P be an integral Kleinian sphere packing in Rd ∪ {∞}.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some (d − 1)-sphere in P (mod q) .
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A strong asymptotic local-global conjecture

Conjecture (A strong asymptotic local-global conjecture for certain
Kleinian sphere packings)

Let P be a primitive integral Kleinian (d − 1)-sphere packing in
Rd ∪ {∞} with an orientation-preserving automorphism group Γ of
Möbius transformations.
Under some conditions, every sufficiently large admissible integer is
a bend of a (d − 1)-sphere in P. That is, there exists an
N0 = N0(P) such that if m is admissible and m > N0, then m is
the bend of a (d − 1)-sphere in P.
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How does my version of the Kloosterman circle method
come into play?

Using Möbius transformations on Rd ∪ {∞} and inversive
coordinates of (d − 1)-spheres, one can obtain a family of
integral quadratic polynomials in 4 variables with a
coprimality condition on the variables.

Potentially, my version of the Kloosterman circle method
could be then used to prove a result towards a strong
asymptotic local-global conjecture for certain Kleinian sphere
packings.

The potential result would be the first to apply to multiple
conformally inequivalent integral Kleinian sphere packings.

Edna Jones Kloosterman method and weighted representation numbers



How does my version of the Kloosterman circle method
come into play?
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could be then used to prove a result towards a strong
asymptotic local-global conjecture for certain Kleinian sphere
packings.

The potential result would be the first to apply to multiple
conformally inequivalent integral Kleinian sphere packings.
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Thank you for listening!
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The singular series and the real factor

Singular series:

SF (n) =
∞∑
q=1

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)

Real factor:

σF ,ψ,∞(n,X ) = lim
ε→0+

1

2ε

∫
∣∣∣F (m)− n

X2

∣∣∣<ε ψ(m) dm.
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Kloosterman sums and Salié sums

κs,q(a, b) =
∑

d (mod q)

(
d

q

)s

e

(
ad + bd∗

q

)
(1)

is either a Kloosterman sum (if s is even) or a Salié sum (if s is
odd).

Lemma (Weil bound for Kloosterman sums)

If s is even, a and b are integers, and q is a positive integer, then

|κs,q(a, b)| ≤ τ(q)(gcd(a, b, q))1/2q1/2,

where the divisor function τ(q) is the number of positive divisors
of q.
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A principle of nonstationary phase

Theorem (Principle of nonstationary phase in 1 variable, J., 2022)

Let ψ ∈ C∞
c (R) and let M ≥ 0. Let f ∈ C∞(R) be such that

|f ′(x)| ≥ B > 0 and |f (j)(x)| ≤ |f ′(x)| for all x ∈ supp(ψ) and for
each integer j satisfying 2 ≤ j ≤ ⌈M⌉. Then∫

R
e(f (x))ψ(x) dx ≪ψ,M B−M .
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (d − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hd+1).

Figure: Apollonian circle packing as the limit set of Γ. Image by Alex
Kontorovich.
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Action of Isom(Hd+1) extends continuously to

R̂d = Rd ∪ {∞}, the boundary of Hd+1.

Γ stabilizes P (i.e., Γ maps P to itself).

Γ is a thin group.
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Kleinian sphere packings
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A strong asymptotic local-global conjecture

Conjecture (A strong asymptotic local-global conjecture for certain
Kleinian sphere packings)

Let P be a primitive integral Kleinian (d − 1)-sphere packing in
Rd ∪ {∞} with an orientation-preserving automorphism group Γ of
Möbius transformations.

1 Suppose that there exists a (d − 1)-sphere S0 ∈ P such that
the stabilizer of S0 in Γ contains (up to conjugacy) a
congruence subgroup of PSL2(OK ), where K is an imaginary
quadratic field and OK is the ring of integers of K . This
condition implies that d ≥ 3.

2 Suppose that there is a (d − 1)-sphere S1 ∈ P that is tangent
to S0.

Then every sufficiently large admissible integer is a bend of a
(d − 1)-sphere in P. That is, there exists an N0 = N0(P) such
that if m is admissible and m > N0, then m is the bend of a
(d − 1)-sphere in P.

Edna Jones Kloosterman method and weighted representation numbers



A strong asymptotic local-global conjecture

Conjecture (A strong asymptotic local-global conjecture for certain
Kleinian sphere packings)

Let P be a primitive integral Kleinian (d − 1)-sphere packing in
Rd ∪ {∞} with an orientation-preserving automorphism group Γ of
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