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Quadratic Forms Q(v) = ax? + by? + cz?

Q(v) = ax? + by? + cz?

a,b,ceZ
ged(a, b,c) =1

<
I
N < X
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Quadratic Forms Q(v) = ax? + by? + cz?

Q(v) = ax? + by? + cz?

a,b,ceZ
ged(a, b,c) =1

<
I
N < X

Let m be an integer. We would like to know when
Q(v) =m

has an integer solution.
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Easier Problem: Look (mod n)

Definition (Local representation number)

rn(m, Q) =#{v e € (2/nZ)?: Q(v) = m (mod n}.
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Easier Problem: Look (mod n)

Definition (Local representation number)

rn(m, Q) =#{v e € (2/nZ)?: Q(v) = m (mod n}.

Because of Chinese Remainder Theorem, only need to look at
ro(m, @), p prime.
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Local (representation) density or p-adic density

Let p be a prime. Let Z, denote the set of p-adic integers with the
usual Haar measure.

Definition (Local (representation) density or p-adic density)

_ Volg(Q7(U))
ap(m Q) = lim o (0)

where U is an open set in Z, containing m, VoIZ;o,)(Q_l(U)) is the
volume of Q~1(U) in Z?), and Volz,(U) is the volume of U in Zj.

V.
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Local (representation) density or p-adic density

Let p be a prime. Let Z, denote the set of p-adic integers with the
usual Haar measure.

Definition (Local (representation) density or p-adic density)

_ Volg(Q7(U))
ap(m Q) = lim o (0)

where U is an open set in Z, containing m, VoIZ;o,)(Q_l(U)) is the
volume of Q~1(U) in Z?), and Volz,(U) is the volume of U in Zj.

V.

It can be shown that
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Why do we care about local densities?

Definition (Representation number)

r(m, Q) =#{ve 73 =m}
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Why do we care about local densities?

Definition (Representation number)

r(m, Q) =#{ve 73 =m}

The ap(m, Q)'s give us local information.
If m # 0, Hensel's lemma shows that

ap(m, Q) =0 <= ry(m,Q) =0 for some k.

This implies that r(m, Q) = 0 if ap(m, Q) = 0 for some prime p.
(Converse does not hold.)
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Siegel’s Mass Formula for Rank 3 Quadratic Forms

Theorem (Siegel, 1935)

Let m be an integer and @ be a positive definite quadratic form of
rank 3. Let {Q;} be a complete set representatives for classes in
the same genus as Q. Then

r(m, Qj)
2 %0(Q)
= aR(m, Q) H Olp(ma Q))
ZJ:#O(QJ) p prime

where O(Qy) is the orthogonal group of Q; over Z,

_ Volgs (Q~1(V))
or(m Q) = Im - —\o(0)
containing m, Volgs(Q~1(U)) is the volume of @~*(U) in R3, and
Volg (V) is the volume of U in R.

, U is an open set in R
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Specialized Version of Siegel's Mass Formula

Corollary (Specialized Version of Siegel's Mass Formula)

Let m be an integer and Q be a positive definite quadratic form of
rank 3. If Q is in a genus containing only one class, then

r(m, Q) = ar(m, Q) H ap(m, Q).

p prime
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Specialized Version of Siegel's Mass Formula

Corollary (Specialized Version of Siegel's Mass Formula)

Let m be an integer and Q be a positive definite quadratic form of
rank 3. If Q is in a genus containing only one class, then

r(m, Q) = ar(m, Q) H ap(m, Q).

p prime

@ Jones and Pall (1939) proved that there are 82 primitive
quadratic forms of the form ax? + by? + cz? with
0 < a < b < ¢ such that each is in a genus containing only
one class.
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Specialized Version of Siegel's Mass Formula

Corollary (Specialized Version of Siegel's Mass Formula)

Let m be an integer and Q be a positive definite quadratic form of
rank 3. If Q is in a genus containing only one class, then

r(m, Q) = ar(m, Q) H ap(m, Q).

p prime

@ Jones and Pall (1939) proved that there are 82 primitive
quadratic forms of the form ax? + by? + cz? with
0 < a < b < ¢ such that each is in a genus containing only
one class.

o Lomadze (1971) computed the representation numbers for
these 82 quadratic forms.
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Past Results on Local Densities

Complicated formulas (hard to tell when ap(m, Q) is equal to
zero):

e Yang (1998)
e Hanke (2004)
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Past Results on Local Densities

Complicated formulas (hard to tell when ap(m, Q) is equal to
zero):

e Yang (1998)
e Hanke (2004)

Not in full generality:
o Siegel (1935): If p t 2abcm, then

1 /—ab

where (p> is the Legendre symbol.

@ Berkovich and Jagy (2012)

Edna Jones Local Densities of Diagonal Ternary Quadratic Forms



Past Results on Local Densities

Theorem (Berkovich and Jagy, 2012)

Let p be an odd prime and u be any integer with (—pu) =-—1.

Let Q(v) = ux?®+ py? + upz®. Suppose m is a nonzero integer and
m = mop™, where gcd(mg, p) = 1. Then

p~m/2 (1 — (—mo>> , if my is even,
aP(m7 Q) = &

p(—m+1)/2 <1 + 1> , if my is odd.
P
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let p be an odd prime. Suppose pta, b= bop®, and c = cop“,
where by < ¢, ged(bg, p) = 1, and ged(co, p) = 1.

Suppose m is a nonzero integer and m = mgp™, where
ged(mo, p) = 1.

ap(m, Q) is easily computable using rational functions and
Legendre symbols. Depends on a, by, b1, ¢y, c1, mg, m1, and p.
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let p be an odd prime. Suppose pta, b= bop®, and c = cop“,
where by < ¢, ged(bg, p) = 1, and ged(co, p) = 1.
Suppose m is a nonzero integer and m = mgp™, where
ged(mo, p) = 1.
ap(m, Q) is easily computable using rational functions and
Legendre symbols. Depends on a, by, b1, ¢y, c1, mg, m1, and p.
Multiple cases:

@ my < by and depends on parity of m;

@ by < my < ¢ and depends on parity of by

@ my > c¢1 and depends on parities of by, c1, and my
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let p be an odd prime. Suppose pta, b= bop®, and c = cop“,
where by < ¢, ged(bg, p) = 1, and ged(co, p) = 1.
Suppose m is a nonzero integer and m = mgp™, where
ged(mo, p) = 1.
ap(m, Q) is easily computable using rational functions and
Legendre symbols. Depends on a, by, b1, ¢y, c1, mg, m1, and p.
Multiple cases:

@ my < by and depends on parity of m;

@ by < my < ¢ and depends on parity of by

@ my > c¢1 and depends on parities of by, c1, and my

Also (0, Q) is computable. Multiple cases dependent on parities
b1 and c;.
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Main Theorem when m; < ¢

Theorem (J., 2020)
If my < by, then

amo . .
pm/2 (1 + ()) , if my is even,
aP(ma Q) = p
0, if my is odd.

If by < my < ¢y, then ap(m, Q) =
( mi+1
Pb1/2 1_1<—abo> +(1_1> (m]_—b]_
p p p 2
(-1)m -1 —aby m —b 11— (—1)m
- 4 * p > 4 ’

if by is even,

mp+1 my
plbi=1)/2 1 4 (a) <b°> (mo> ,if by is odd.
P P P
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Proof Sketch

@ Use exponential sums and quadratic Gauss sums to compute
rok(m, Q).
@ Divide by p?f and take a limit.
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Quadratic Gauss Sums

Abbreviate e(w) = 2™,

Definition

The quadratic Gauss sum g(n; q) over Z/qZ is defined by

j=0
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A Sum Containing e(w)

iy <nt> {q, if n=0 (modgq),
el — ) = _
o \d 0, otherwise.
Im
e(1/3) |
.
¢(0/3)
? Re
N
e(2/3)
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A Sum Containing e(w)
- <"t> g, ifn=0(modgq),
e D— pr—
q 0, otherwise.

pkz_le<(0(v)_m)t) — {pk’ if Qv)=m (mod pk) ,

0, otherwise.
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A Sum Containing e(w)

- <"t> g, ifn=0(modgq),
el — ) =
q 0, otherwise.

pz_le<(0(v)_m)t) — {pk’ if Qv)=m (mod pk) ,

0, otherwise.

0, otherwise.

(LMt {1, i Q(v) = m (mod p),
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Counting Solutions (mod p*)

1pkle<(Q(v)—m)t> {1, i Q) = m (modpk),
pr = pk o,

otherwise.

P SIS S (Coro

Edna Jones Local Densities of Diagonal Ternary Quadratic Forms



Counting Solutions (mod p*)

k__ k__ k__ k_
PR IR 1 R (ax? + by? + cz?> — m)t
= ok Z € Pk
x=0 y=0 z=0 t=0
1 Pl £\ A [ atx? Pl bty? Pl ctz?
= — e el — el —— el —
() () () o)
p t=0 P x=0 p y=0 P z=0 P
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Counting Solutions (mod p*)

1 (ax? + by? + cz® — m)t)
= —_— Z e
p <

k
x=0 y=0 z=0 t= P
k_ k_ k_ k_
lpl—tp1atX2plbty2plctz2
ok 22\ Tk \ ok de Pk d.e ok
t=0 x=0 y=0 z=0
k—1
1R —mt
= ? e(pk> g(at; pk) g(bt; pk) g(ct; pk> .
t=0
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Counting Solutions (mod p*)

rpk(m7 Q)
k_
= :k ; le<rzt> (at; pk) g<bt; pk) g(ct; pk>
t=0
1 -l

= (g(&p"))s + plkp _1 e<_p’:t> g(at;pk> g(bt; pk) g(ct; pk> :
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Counting Solutions (mod p*)

Since g(O; pk) = pk,

k_
k 1 e~
(m Q = 7 (S
P t=1

) e(atint) & (o1 ) (et
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Formulas for Quadratic Gauss Sums

Lemma
Suppose k is a positive integer, p is an odd prime, and n # 0. Let
n = nop’ so that ged(ng, p) = 1. Then

p¥, if € > k,

Ck)
g(n,P ) =) plk+or2 <:0€) ph—t, U<k,
p

where

1, ifpk*=1 (mod4),
E k—t =
Pt i, ifp"=*=3(mod4),

and <H> is the Jacobi symbol.
p
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Formulas for Quadratic Gauss Sums

Lemma

Suppose p is an odd prime and a € 7Z.Then

s =51+ (3))+(3)

If a# 0 (mod p), then

w0 -£(6):2)
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Proof for the previous lemma.

Let t be an integer. The number of solutions modulo p of the

congruence

j2 =t (mod p)

t
is1+ () Therefore,
p

p—1 -1

- E() 56+ ()3)

-
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Proof for the previous lemma.

Let t be an integer. The number of solutions modulo p of the

congruence

j2 =t (mod p)

t
is1+ () Therefore,
p

-1

- E(5) -5 ()3)

-

When a # 0 (mod p),

o =5 (5):(3)
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Counting Solutions (mod p*)

1 = —mt
= pzk + ? e(pk) g(at; pk> g(bt; pk> g(ct; pk>

_ mlt
(T o) (o) s o).
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Counting Solutions (mod p*)

—mt
() sl o))
—mop™t c
e<of> g(at; pk) g(bopblt; pk) g(Cop 't pk) :
o —t p
Let t = top”, where 0 < 7 < k — 1 and ty € (Z/p*~"Z)*. Then

k— _ my+7
ro(m, Q) = ikz > e(nmfl>g(atop7;pk>
=0 tye(2/p T2 P

g (bl top” 7 pk) g (c()topq”; pk) :
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Counting Solutions (mod p*)

Let

_motopm1+7'
I G FET
to€(Z/pk—77)*

g(b1 top 7 pk) g(Cotopq”; p")

so that

ro(m, Q) = p? + ZSkT
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Counting Solutions (mod p*)

Let

—mg topm1+7'
I G FET
to€(Z/pk—77)* P

g(b1 top 7 pk) g(Cotopq”; p")

so that
ro(m, Q) = p? + ZSkT

Compute s, under different conditions depending on by, c1, my,
k, and 7. Then compute r,(m, Q) and a,(m, Q).
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Computing sy - when 0 <7< k—m; — 2

For0<7<k—m -2, 5,=0.
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Computing sy - when 0 <7< k—m; — 2

For0<7<k—m -2, 5,=0.

Proof
Suppose that 0 < 7 < k— my — 2. Then let tyg = t; + top, where
1§tlgp—landogtggpk_T_l—l, o)

p—lp 711 —mo(tL + tp)p™+T )
-> ¥ o PN g (s + )i o)

t1=1 th=
g(bl(tl + t2p)p™ i p ) g(co(tl + tp)pttT; pk>
k—1—1
=" - —moty —mgto -k
- Z Z pk—mi—7 ® k17 g(atlp ;p)
t1=1 th=

g<b1 t1p” Pk> g(Cof1PCI+T; Pk)
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Computing sy - when 0 <7< k—m; — 2

FOI’OSTSk—ml—ZSk’T:O.

Proof (continued).

p—1
—moty
Sk = e<pk_ml_T> g(atlpT; pk) (bltlpb1+T pk)

t1=1

pk7771—1

—mgty
g<C0t1PC1+T Pk) > e<pk—ml—1—r)'

tr,=0
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Computing sy - when 0 <7< k—m; — 2
FOI’OSTSk—ml—ZSk’T:O.

Proof (continued).
p—1
S, . — —Mmoty T. .k g(b bi+7. k
ke = E e ph—miT glatip ;p 1tip Y

t1=1
pk7771—1
K —mpt>
g(COtlpC1+T p > Z e<pk—m1—1—r)'

tr,=0
Now

k—1—1 k—my—7—1

p 1 p 1 1
—mot _ —mot
Z pk my—1—7 =P Z pk my—1—7
tr=0 tr=0
.0 =0. O]
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Computing sk when k — min(my, b)) <7< k-1

For k — min(my, b1) <7 < k —1,

p3ktk=)/2 (1 - 1) , ifk—T iseven,
p
0, if k — 7 is odd.

Sk, =
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Computing sk when k — min(my, b)) <7< k-1

For k — min(my, b1) <7 < k —1,

p3ktk=)/2 (1 - 1) , ifk—T iseven,
p
0, if k — 7 is odd.

Suppose that k — min(my, b1) <7 < k —1. Then

atp
Skr = Z plktm)/2 <pk_T> Ephr "

toE(Z/pkiTZ)*

e ()T 5 (@)
P P p

toe(Z/pk—TZ)*

Sk, =
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Computing sk when k — min(my, b)) <7< k-1

Lemma

For k — min(my, b)) <7 < k

p3k+(k—T)/2 (1 — 1) , Ifk— T iseven,
p
0, if k — 7 is odd.

Proof (continued).

a k—T1 tO k—T1
Skt = 8pk_TpE)k/HT/z <> (P)
Pl we@p-—ray

1
pok/2+T/2 pk—T (1 — p) , if k—7is even,

0, if k— 7 is odd.

Sk, =
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Computing S22, (my.by) Sk

Lemma

Let ny = min(my, b1). Then

k—1

k—1
1
> ar= X SRR (1-2) - phpln )

T:k—nl T:k—nl
k—T is even

where | x| is the greatest integer less than or equal to x.
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Computing S22, (my.by) Sk

Lemma

Let ny = min(my, b1). Then

k—1

k—1
—T 1 n
> ar= X SRR (1-2) - phpln )

T:k—nl T:k—nl
k—T is even

where | x| is the greatest integer less than or equal to x.

Proof sketch:
O Let T = %

@ Apply formulas for geometric sums.
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Thank you for listening!
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let Q be the integral quadratic form ax® + by? + cz?, where a, b,
and c are integers. Let p be an odd prime. Suppose p 1 a,
b = bop®, and ¢ = copt, where by < c1, ged(by, p) = 1, and

ged(co, p) = 1.
Suppose m is a nonzero integer and m = mgp™, where
ged(mo, p) = 1.

If my < by, then

amo . .
p’"l/2 <1 + ()) , if my is even,
aP(mv Q) = p
0, if my is odd.
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)
If by < my < ¢y, then

1 /—ab my+1
o33
P P

1 m1—b1 (_1)m1_1
1— =
+< p)( 2 4

Q) +(—.;bo> (m12—b1+1—(;1)m1)>)’

if by is even,

p(bl_]_)/Q - (a)m1+1 (bo)m1 (mo>
P P p))’

if by is odd.
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

If mi > ¢1 and by and c¢; are even, then

pb1/2 (1 + 1 + p—m1/2+c1/2—1 <<_abC;)C0mO> _ 1>
p

(e ()25

if my is even,

pb1/2 ((1 dL I];> (1 _ p*(m1+1)/2+c1/2)

Dz (2)22)

if my is odd.

aP(m’ Q) =
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)
If mi > c1, by is even, and ¢ is odd, then

aP(mv Q) =

pb1/2 (1 _ pfm1/2+(c171)/2 <—abo> (1 + 1) + 1 <_ab0>
p p
+<11> <C1—b1—1+<—abo> c1 — b1+1>>
p 2 p

if my is even,

phi/2 (1 L p(mtD)/2Ha-1)/2 <<‘-‘0’"0> _ <—3b0>>
p p
1 /—ab
5
p\ p
+<1_1> <C1—b1—1+<—abo> C1—b1—|—1>>’
p 2 p 2

if my is odd.

\
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

If my > c1, by is odd, and c; is even, then

(b-1)/2 (1 4 <—3C0>
A (14 (5
_pfm1/2+61/2 (1 + 1) (—ac())) ’
p P

if my is even,

aP(m’ Q) = _
e

4 p(m+1)/2+a/2 <<bomo> B <—aco>>> ’
P p

if my is odd.
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)
If mi > ¢1 and by and c¢; are odd, then

p(b1=1)/2 <1 I (—boco>
p
| p-m/2Ha-1)/2 ((‘9”70) _ <‘b0c0)>)
p p ’

if my is even,

aP(m’ Q) = _
e

_p(—m1+C1)/2 <]_ + 1> <—boCo>) 7
p P

if my is odd.
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Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

Furthermore,

O‘P(O’ Q) =

P (e (-5) (54 (57)2)
p p 2 p 2

if by and ¢ are even,

p\ P
4 l—l C1—b1—1+ —ab() C1—b1+1 )
p 2 p 2

if by is even and ¢y is odd,

p(br1=1)/2 <1 + <—ac0>> , if by is odd and ¢ is even,
p

p(b1—1)/2 <1 + (—boco>> , if by and ¢ are odd.
p
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