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Kleinian sphere packings and the integers

Label on sphere:
bend = 1/(signed radius)

All of the bends of spheres in
these (Kleinian) sphere
packing are integers.

Which integers appear as
bends?
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Soddy sphere packings: The construction

Given four pairwise tangent spheres with disjoint points of
tangency, there are exactly two spheres tangent to the given ones.

Figure: Four pairwise tangent
spheres.

Figure: Four pairwise tangent
spheres with two additional
tangent spheres.
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Figure: Four
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Figure: More
tangent
spheres.

Figure: A Soddy
sphere packing.
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Soddy sphere packings and the integers

Figure: An integral Soddy
sphere packing. Image by
Nicolas Hannachi.

Label on sphere:
bend = 1/(signed radius)

All of the bends of spheres in
this Soddy sphere packing
are integers.

Which integers appear as
bends?

Are there any congruence or
local obstructions?
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Admissible integers

Definition (Admissible integers for Soddy sphere packings)

Let P be an integral Soddy sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some sphere in P (mod q) .

Equivalently, m is admissible if m has no local obstructions.
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Admissible integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing P if
and only if

m ≡ 0 or ε(P) (mod 3) ,

where ε(P) ∈ {±1} depends only on the packing.

Example

m is admissible ⇐⇒
m ≡ 0 or 1 (mod 3).
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The (strong asymptotic) local-global theorem for Soddy
sphere packings

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing P
satisfy a (strong asymptotic) local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a sphere in the packing.

Example

If m ≡ 0 or 1 (mod 3) and m is
sufficiently large, then m is the bend
of a sphere in the packing.
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Proof outline for Soddy sphere packing result

1 Show that the automorphism/symmetry group of the Soddy
sphere packing contains a congruence subgroup of
PSL2(Z[eπi/3]), and this congruence subgroup maps a
particular sphere to itself. This implies that the set of bends
contains “primitive” values of a quaternary quadratic
polynomial.

2 The quaternary quadratic polynomial gives you enough to
work with so that you can quote the result of the circle
method to give an asymptotic formula involving a singular
series.

3 Show that the singular series (with the primitivity restriction)
is bounded away from zero when m is admissible.
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Congruence subgroup of PSL2(OK )

Definition (Principal congruence subgroup of PSL2(OK ))

For an imaginary quadratic field K , a principal congruence
subgroup of PSL2(OK ) is a subgroup of PSL2(OK ) of the form

Λ(ϱ) =

{(
a b
c d

)
∈ PSL2(OK ) :

(
a b
c d

)
≡

(
1 0
0 1

)
(mod ϱ)

}
for a fixed element ϱ of OK .

Example (Soddy sphere packing, Kontorovich, 2019)

There exists a sphere S0 ∈ P such that the stabilizer of S0 in Γ
contains (up to conjugacy) the congruence subgroup{(

a b
c d

)
∈ PSL2(O) : b, c ≡ 0 (mod ϱ)

}
⊃ Λ(ϱ),

where O = Z[eπi/3] and ϱ = 1 + eπi/3.
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Figure: Apollonian circle packing as the limit set of Γ. Image by Alex
Kontorovich.
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Action of Isom(Hn+1) extends continuously to

R̂n = Rn ∪ {∞}, the boundary of Hn+1.

Γ stabilizes P (i.e., Γ maps P to itself).

Γ is a thin group.
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Examples of integral Kleinian sphere packings

Figure: An integral
Soddy sphere
packing. Image by
Nicolas Hannachi.

Figure: An integral
Kleinian (more
specifically, an
orthoplicial) sphere
packing. Image by
Kei Nakamura.

Figure: A
fundamental domain
of an integral
Kleinian sphere
packing. Image by
Arseniy (Senia)
Sheydvasser.
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(Strong asymptotic) local-global principles

Goal: Prove (strong asymptotic) local-global principles for certain
integral Kleinian sphere packings, that is, prove:
If m is admissible and sufficiently large, then m is the bend of
an (n − 1)-sphere in the packing.

Definition (Admissible integers)

Let P be an integral Kleinian sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some (n − 1)-sphere in P (mod q) .
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Why should we have (strong asymptotic) local-global
principles?

Theorem (Kim, 2015)

Let P be a Kleinian (n − 1)-sphere packing with n ≥ 2.
The number of spheres in P with bend at most N (counted with
multiplicity) is asymptotically equal to a constant times Nδ, where
δ = the Hausdorff dimension of the closure of P.

For n ≥ 3,

δ > n − 1 ≥ 2.

Thus, we would would expect that the multiplicity of a given
admissible bend up to N is roughly Nδ−1 ≫ N, so we should expect
that every sufficiently large admissible number to be represented.
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Progress towards (strong asymptotic) local-global
conjectures for Kleinian sphere packings

Figure: (Strong asymptotic)
local-global principle proven
for Soddy sphere packings by
Alex Kontorovich in 2019
(arXiv 2012).

Figure: Partial local-global
results for orthoplicial sphere
packings independently proven
by Kei Nakamura (arXiv 2014)
and Dimitri Dias (arXiv 2014).
I am also working on this.
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Orthoplicial sphere packings: The construction

Given four pairwise tangent spheres, there are exactly two ways to
inscribe four pairwise tangent spheres such that each inscribed
sphere is tangent to exactly three of the original spheres.
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Orthoplicial sphere packings: The construction

Figure: An
orthoplicial sphere
octuple.

Figure: Adding more
spheres.

Figure: An integral
orthoplicial sphere
packing.
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Orthoplicial sphere packings

For 1 ≤ j ≤ 8, let Sj be spheres in an integral orthoplicial octuple
such that Sj and Sk are tangent if j ̸≡ k (mod 4).
Let bj be the bend of Sj .

b1 + b5 = b2 + b6 = b3 + b7 = b4 + b8 = 2bµ,

where bµ ∈ Z.

Example

b1 + b5 = b2 + b6

= b3 + b7

= b4 + b8

= 2bµ
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Orthoplicial sphere packings

For 1 ≤ j ≤ 8, let Sj be spheres in an integral orthoplicial octuple
such that Sj and Sk are tangent if j ̸≡ k (mod 4).
Let bj be the bend of Sj .

b1 + b5 = b2 + b6 = b3 + b7 = b4 + b8 = 2bµ,

where bµ ∈ Z.

Example

0 + 2 = 0 + 2

= 1 + 1

= 1 + 1

= 2 · 1
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Orthoplicial sphere packings

For 1 ≤ j ≤ 8, let Sj be spheres in an integral orthoplicial octuple
such that Sj and Sk are tangent if j ̸≡ k (mod 4).
Let bj be the bend of Sj .

b1 + b5 = b2 + b6 = b3 + b7 = b4 + b8 = 2bµ,

where bµ ∈ Z.

=⇒ We just need b1, b2, b3, b4, and bµ to obtain all the bends
in an orthoplicial octuple.
(S1, S2, S3, and S4 are pairwise tangent.)
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A congruence restriction for orthoplicial sphere packings

Theorem (Nakamura, 2014; Dias, 2014)

For a primitive integral orthoplicial sphere packing P, there exists
ε(P) ∈ {±1} such that the bend b of any sphere in P satisfies

b ≡ 0, 2, or ε(P) (mod 4) .

Example

Every bend in this packing is
congruent to 0, 1, or 2 (mod 4).
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Partial local-global principle for orthoplicial sphere packings

Theorem (Dias, 2014)

Let b1 and b2 be the bends of two tangent spheres in a primitive
integral orthoplicial sphere packing P such that b1 is nonzero and
even and b2 is odd.
Every sufficiently large integer m that satisfies gcd(m, b1) = 1 is
the bend of a sphere in P if and only if m ≡ b2 (mod 4).

Proof methods similar to those in Kontorovich’s paper on the
local-global principle for Soddy sphere packings.

There exists a sphere S0 ∈ P such that the stabilizer of S0 in Γ
contains (up to conjugacy) the congruence subgroup{

g ∈ PSL2(Z[i ]) : g ≡
(
±1 0
0 ±1

)
or

(
±i 0
0 ∓i

)
(mod 2)

}
.

This gives rise to a similar quadratic polynomial for bends.
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Partial local-global principle for orthoplicial sphere packings

Using essentially the same proofs as Dias, we have the following.

Theorem (J., 2025+)

Let b1 and b2 be the bends of two tangent spheres in a primitive
integral orthoplicial sphere packing P such that b1 + b2 is odd and
b1 ̸= 0.
Every sufficiently large integer m that satisfies gcd(m, b1) = 1 and
m ≡ b2 (mod 4) is the bend of a sphere in P.

Example

For this orthoplicial sphere packing,
every sufficiently large m that
satisfies gcd(m,−7) = 1 and
m ≡ 12 ≡ 0 (mod 4) is the bend of a
sphere in this packing.
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Consequences of partial local-global principle for
orthoplicial sphere packings

Theorem (J., 2025+)

Let b1 and b2 be the bends of two tangent spheres in a primitive
integral orthoplicial sphere packing P such that b1 + b2 is odd and
b1 ̸= 0.
Every sufficiently large integer m that satisfies gcd(m, b1) = 1 and
m ≡ b2 (mod 4) is the bend of a sphere in P.

Corollary (J., 2025+)

Let P0 be the orthoplicial sphere
packing generated by the octuple on
the left. Every sufficiently large
integer m ≡ 0, 1, or 2 (mod 4) is the
bend of a sphere in P0.
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Consequences of partial local-global principle for
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packing generated by the octuple on
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Edna Jones Local-global principle for Kleinian sphere packings



Proof of local-global principle for particular orthoplicial
sphere packing

Corollary (J., 2025+)

Let P1 be the orthoplicial sphere
packing generated by the octuple on
the left. Every sufficiently large
integer m ≡ −1, 0, or 2 (mod 4) is
the bend of a sphere in P1.

Proof. −1, 2, and 4 are bends of 3 pairwise tangent spheres in P1.
−1 + 2 and −1 + 4 are odd, so every sufficiently large integer m
that satisfies one of the following is the bend of a sphere in P1.

1 gcd(m, 2) = 1 and m ≡ −1 (mod 4)

2 gcd(m,−1) = 1 and m ≡ 4 ≡ 0 (mod 4)

3 gcd(m,−1) = 1 and m ≡ 2 (mod 4)
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Proof sketch for orthoplicial sphere packing results

Let b1, b2, b3, b4, and bµ be associated with an orthoplicial
octuple in P. Having S0 ∈ P such that the stabilizer of S0 in Γ
contains (up to conjugacy) the congruence subgroup

Λ =

{
g ∈ PSL2(Z[i ]) : g ≡

(
±1 0
0 ±1

)
or

(
±i 0
0 ∓i

)
(mod 2)

}
.

=⇒ When α = α1 + α2i and 2β = 2(β1 + β2i) are coprime in

Z[i ] and α ≡ ±1 or ± i (mod 2), there is

(
α 2β
2γ δ

)
∈ Λ,

and

F (α, 2β) = A(α2
1 + α2

2) + 4B(α1β2 − α2β1)

+ 4C (α1β1 + α2β2) + 4D(β2
1 + β2

2)− b1

is the bend of a sphere in P tangent to S0, where

A = b1 + b2, B = −b1 + b2 + b3 + b4 − 2bµ
2

,

C = −b1 + b2 + b3 − b4
2

, D = b1 + b3.
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Proof sketch for orthoplicial sphere packing results (cont.)

Have quaternary quadratic form

f (α, 2β) = F (α, 2β) + b1

= A(α2
1 + α2

2) + 4B(α1β2 − α2β1)

+ 4C (α1β1 + α2β2) + 4D(β2
1 + β2

2)

with αZ[i ] + 2βZ[i ] = Z[i ] and α ≡ ±1 or ± i (mod 2).

If m + b1 = f (α, 2β) is odd, then A = b1 + b2 is odd and
α ≡ ±1 or ± i (mod 2).

=⇒ Assuming A is odd, if m + b1 = f (α, 2β) with
αZ[i ] + 2βZ[i ] = Z[i ] and m + b1 odd, then m is a bend of sphere
in P tangent to S0.
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Proof sketch for orthoplicial sphere packing results (cont.)

A lower bound on the count of the number of times that m is a
bend when m + b1 is odd:

R(m + b1) =
∑

α,β∈Z[i ]
αZ[i ]+2βZ[i ]=Z[i ]

1{F (α,2β)=m}

=
∑

α,β∈Z[i ]
αZ[i ]+2βZ[i ]=Z[i ]

1{f (α,2β)=m+b1},

where

1{Y } =

{
1 if Y holds,

0 otherwise.

Want R(m + b1) > 0 when m is admissible.
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Proof sketch for orthoplicial sphere packing result (cont.)

To analyze R(n),

use inclusion-exclusion to remove coprimality condition
(αZ[i ] + 2βZ[i ] = Z[i ]),

use the circle method with a Kloosterman refinement on the
quaternary quadratic form, and

analyze a singular series (which contains local information and
involves a product of local densities of solutions).

Easier to do when gcd(m, b1) = 1
I am working on cases when gcd(m, b1) > 1.
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I am working on cases when gcd(m, b1) > 1.
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Proof sketch for orthoplicial sphere packing result (cont.)

To analyze R(n),

use inclusion-exclusion to remove coprimality condition
(αZ[i ] + 2βZ[i ] = Z[i ]),
use the circle method with a Kloosterman refinement on the
quaternary quadratic form, and

analyze a singular series (which contains local information and
involves a product of local densities of solutions).

Easier to do when gcd(m, b1) = 1
I am working on cases when gcd(m, b1) > 1.
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My research

I am working on (strong asymptotic) local-global principles for
certain integral Kleinian sphere packings.

Figure: An integral
orthoplicial sphere
packing. Image by
Kei Nakamura.

Figure: A fundamental domains of two
conformally inequivalent integral
Kleinian sphere packing. Images by
Arseniy (Senia) Sheydvasser.
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Illustrations credits

Besides the illustrations previously credited and a few orthoplicial
octuple illustrations created by the presenter, the illustrations for
this talk came from the following papers:

Alex Kontorovich, “The Local-Global Principle for Integral
Soddy Sphere Packings,”Journal of Modern Dynamics,
volume 15, pp. 209-236, 2019, https://www.aimsciences.
org/article/doi/10.3934/jmd.2019019

Kei Nakamura,“The local-global principle for integral bends in
orthoplicial Apollonian sphere packings,” preprint,
arXiv:1401.2980
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Thank you for listening!
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